Monthly Best Of on 05/28/2025




Synthesis of tridimensional textures by means of a fractal process

Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 05/28/2025 and last updated on 05/31/2025 14:01:34 -CEST-)




Contents of this page:


1-The 128 most referenced Pictures (*):

(*): Undisplayed pictures -if any- do not exist.



The eroded Menger Sponge -iteration 3-
1-348 reference(s)
The execution of a very simple program on a Turing Machine
2-120 reference(s)
Jean-François COLONNA (on 11/17/1994)with its fractal mountains
3-110 reference(s)
Autostereogram of a quaternionic Julia set -tridimensional cross-section-
4-98 reference(s)
A regular 3-gon -an equilateral triangle-
5-97 reference(s)
Autostereogram with an hidden volcano
6-90 reference(s)
Fractal Self-Portrait -a Tribute to René Magritte-
7-90 reference(s)
A distorded -for the sake of display- 5-cube -an hyperhypercube-
8-90 reference(s)
Artistic view of the prime numbers
9-90 reference(s)
The Universe at the heart of a Calabi-Yau manifold
10-88 reference(s)
The first four iterations of the construction of the von Koch snowflake
11-87 reference(s)
The execution of a very simple program on a Turing Machine
12-85 reference(s)
The execution of a very simple program on a Turing Machine
13-85 reference(s)
The execution of a very simple program on a Turing Machine
14-84 reference(s)
The Sierpinski Carpet -iteration 1 to 5-
15-82 reference(s)
The rain (or the snow)is falling
16-82 reference(s)
The execution of a very simple program on a Turing Machine
17-80 reference(s)
The generalized Ulam spiral
18-79 reference(s)
The Klein bottle
19-79 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
20-78 reference(s)
Autostereogram of a quaternionic Julia set -tridimensional cross-section-
21-75 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
22-74 reference(s)
Kasner billiard: Time-dependent billiard (from negative curvatures to positive curvature)with one accelerated particle
23-73 reference(s)
The random walk of photons escaping the Sun
24-72 reference(s)
Evolution of a tridimensional representation of a quadridimensional Calabi-Yau manifold
25-72 reference(s)
The execution of a very simple program on a Turing Machine
26-71 reference(s)
The numerical reversibility of the bidimensional billiard -192 particles-
27-70 reference(s)
A regular 7-gon -an heptagon-
28-70 reference(s)
Tridimensional localization of a point P its distances to the four vertices of a tetrahedron ABCD being known
29-70 reference(s)
The journey of an Earth-like planet (green)in the Solar System -point of view of the virtual planet-
30-69 reference(s)
Autostereogram of 8 color-multiplexed quaternionic Julia sets -tridimensional cross-sections-
31-68 reference(s)
The Sierpinski Carpet -iteration 3-
32-68 reference(s)
Iterations in the complex plane: the computation of the Mandelbrot set
33-68 reference(s)
Black dots on a square lattice
34-68 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold described by means of 5x5 Bidimensional Hilbert Curves -iteration 5-
35-68 reference(s)
Autostereogram of the CMAP
36-67 reference(s)
A double spherical cross-section inside the Menger Sponge -iteration 5-
37-67 reference(s)
Autostereogram with an hidden volcano
38-66 reference(s)
From 'geocentrism' to 'heliocentrism'
39-66 reference(s)
Tridimensional representation of a fractal quadridimensional Calabi-Yau manifold
40-66 reference(s)
Simulation of 'from Pluto to the Sun' with pure uniform circular motions (linear scales)
41-65 reference(s)
An arbitrary surface (Jeener surface 2)in motion
42-65 reference(s)
Tridimensional representation of a hexadimensional Calabi-Yau manifold
43-65 reference(s)
Dissonance chaude/Dissonance froide -a Tribute to Paul Sérusier and Carl Friedrich Gauss-
44-64 reference(s)
Autostereogram with an hidden volcano
45-63 reference(s)
The foggy Babel Tower -a Tribute to Brueghel the Elder-
46-63 reference(s)
Zoom in on a pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) -tridimensional cross-section-
47-63 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
48-63 reference(s)
Generation of the 63x63 first Conway's surreal complex numbers
49-62 reference(s)
The Generalization of the reflection of a triangle
50-62 reference(s)
Zoom in on a pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) -tridimensional cross-section-
51-62 reference(s)
A one sheet hyperboloid of revolution -negative curvature-
52-62 reference(s)
Heterogeneous -tridimensional anti-gaussian field- random meshing of a cube
53-62 reference(s)
Tridimensional display of the Riemann Zeta function inside [-50.0,+50.0]x[-50.0,+50.0] (bird's-eye view)
54-61 reference(s)
A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) and with a 0 to pi rotation about the X axis -tridimensional cross-section-
55-61 reference(s)
The Goldbach Conjecture
56-61 reference(s)
A 'tridimensional epicycloïdal' pseudo-torus
57-61 reference(s)
The Ptolemaic system with equant -grey circle above the Earth- with a small light grey circle -the epicycle- whose center describes a larger dark grey circle -the deferend-
58-61 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
59-61 reference(s)
LE BUG DE L'AN 2000 (comprendre l'informatique jusqu'à ses défaillances)
60-61 reference(s)
The 64 first lines of the Pascal's Triangle -modulo 5-
61-60 reference(s)
A 1972 Télémécanique T1600 computer with a 32 KB central memory and two 512 KB disk drives
62-60 reference(s)
A tridimensional fractal manifold defined by means of three tridimensional fields
63-60 reference(s)
The Mandelbrot set
64-60 reference(s)
The Lorenz attractor
65-60 reference(s)
A blue Sponge-tree -a Tribute to Yves Klein-
66-60 reference(s)
Heterogeneous -tridimensional anti-gaussian field- random non linear meshing of a cube
67-60 reference(s)
A fractal surface (six iterations)defined by means of three bidimensional fields
68-59 reference(s)
The Simpson paradox
69-59 reference(s)
The distances {Sun-Jupiter,Sun-Saturn,Sun-Uranus,Sun-Neptune} during one neptunian year
70-59 reference(s)
Bidimensional brownian motion on the Möbius strip
71-59 reference(s)
Zoom in on a pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
72-59 reference(s)
Tridimensional representation of quadridimensional Calabi-Yau manifolds -Calabi-Yau manifolds attached to every point of a fractal tridimensional space-
73-59 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
74-59 reference(s)
The Lorenz attractor
75-58 reference(s)
The Legendre Conjecture with 0 < n < 201
76-58 reference(s)
The DNA of Mathematics -the 480 first digits of 'pi' and '2.pi'-
77-58 reference(s)
Tridimensional representation of quadridimensional Calabi-Yau manifolds -Calabi-Yau manifolds attached to every point of a fractal tridimensional space-
78-58 reference(s)
Evolution of a tridimensional representation of a quadridimensional Calabi-Yau manifold
79-58 reference(s)
The Jeener-Klein triple bottle
80-58 reference(s)
Tridimensional display of the Riemann Zeta function inside [-50.0,+50.0]x[-50.0,+50.0]
81-57 reference(s)
Artistic view of the Big Bang
82-57 reference(s)
The Sierpinski Carpet -iteration 5-
83-57 reference(s)
2.pi rotation about the Y axis of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')-tridimensional cross-section-
84-57 reference(s)
The Node, Rama Revealed -a Tribute to Arthur C. Clarke and Gentry Lee-
85-57 reference(s)
Sixteen interlaced fractal torus
86-57 reference(s)
France covered with digits
87-57 reference(s)
The bidimensional brownian motion of 891 particles
88-56 reference(s)
4 evenly distributed points on a sphere -a Tetrahedron- by means of simulated annealing
89-56 reference(s)
The generalized Ulam spiral displaying 2025 numbers
90-56 reference(s)
A regular 4-gon -a square-
91-56 reference(s)
The 16 first decimals -base 10- of 'pi' on a Bidimensional Hilbert Curve -iteration 2-
92-56 reference(s)
A tridimensional pseudo-random walk defined by means of 'pi': 3.141592... -100.000 digits, -base 10- into 050330... -128.508 digits, -base 6-
93-56 reference(s)
An arbitrary surface (Jeener surface 2)
94-56 reference(s)
The Menger Sponge -iteration 5-
95-56 reference(s)
Pseudo-octonionic Julia sets along the border of the Mandelbrot set -tridimensional cross-sections-
96-56 reference(s)
The quaternionic Julia set computed with A=(0,1,0,0)-tridimensional cross-section-
97-56 reference(s)
A sphere described by means of a Bidimensional Hilbert Curve -iteration 5-
98-56 reference(s)
La Génèse (1974)
99-56 reference(s)
Tridimensional representation of quadridimensional Calabi-Yau manifolds -Calabi-Yau manifolds attached to every point of our familiar tridimensional space?-
100-56 reference(s)
The Ulam spiral
101-55 reference(s)
The generalized Ulam spiral displaying 1024 numbers
102-55 reference(s)
The construction of the Klein bottle described by means of a Bidimensional Hilbert Curve -iteration 7-
103-55 reference(s)
Anaglyph -blue=right, red=left- of an hypercube
104-55 reference(s)
Heterogeneous -tridimensional anti-gaussian field- random meshing of a cube
105-55 reference(s)
The definition of a monodimensional 'quasi-continuous' cellular automata
106-55 reference(s)
The 'sharp' Golden Triangle
107-54 reference(s)
The smooth integers: the prime factor product -the radical function- of the integer numbers
108-54 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one marsian year -Earth point of view and zoom on the four first planets-
109-54 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)computed with 2 different optimization options on the same computer (sensitivity to rounding-off errors)
110-54 reference(s)
N-body problem integration (N=10)displaying the actual Solar System with its simultaneous 2.pi rotation, our Earth being at the origin of the coordinates
111-54 reference(s)
The Möbius strip
112-54 reference(s)
A Douady rabbit -a complex Julia set computed with A=(-0.13,+0.77)- with display of the arguments
113-54 reference(s)
Tridimensional fractal cross -iteration 4-
114-54 reference(s)
Rotation about the Y (vertical)axis of a tridimensional representation of a quadridimensional Calabi-Yau manifold that can also be viewed as a set of 4x3 stereograms
115-54 reference(s)
Homogeneous random non linear meshing of a cube
116-54 reference(s)
Quantum vacuum fluctuations
117-53 reference(s)
Universe or Multiverse -The fractal Universe-?
118-53 reference(s)
The execution of a very simple program on a Turing Machine
119-53 reference(s)
A tridimensional structure made of six Golden Decagons with aperiodic Penrose tilings
120-53 reference(s)
A torus
121-53 reference(s)
Dynamics of the even distribution of 24 points on a sphere by means of simulated annealing
122-53 reference(s)
Untitled 0535 (1972-1976)-as it was displayed on a Tektronix T4010/T4014 screen-
123-53 reference(s)
The K-smooth integers on a generalized Ulam spiral
124-53 reference(s)
The journey of an Earth-like planet (green)in the Solar System
125-53 reference(s)
An amazing cross-section inside the Menger Sponge -iteration 5-
126-53 reference(s)
A pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section-
127-53 reference(s)
The Legendre Conjecture with 0 < n < 51 and display of Prime Number alignments
128-53 reference(s)




2-The 128 most referenced Pages (*):

(*): Unclickable pages -if any- do not exist.



1-MorePages.Ang.
24189 reference(s)
2-AVirtualSpaceTimeTravelMachine.Ang
1816 reference(s)
3-help.
754 reference(s)
4-xiirv_____.nota.t.
720 reference(s)
5-Exposition_EcolePolytechnique_CentenaireNaissanceBenoitMandelbrot_202410_202411_202412
603 reference(s)
6-xiirs_____.nota.t.
440 reference(s)
7-xiirf_____.nota.t.
395 reference(s)
8-Web_Mail.01.vv
320 reference(s)
9-xiirc_____.nota.t.
279 reference(s)
10-Galerie_ParticleSystems.FV
184 reference(s)
11-xiia_____.nota.t.
182 reference(s)
12-mail.01.vv
147 reference(s)
13-xiirk_____.nota.t.
140 reference(s)
14-demo_14
130 reference(s)
15-Commentaires_ModeleIsingTriDimensionnel.01
130 reference(s)
16-Stereogrammes_AutoStereogrammes.01
124 reference(s)
17-xias_____.nota.t.
121 reference(s)
18-xiav_____.nota.t.
119 reference(s)
19-ChatGPT.11.Fra
117 reference(s)
20-Vcatalogue.11
113 reference(s)
21-copyright.01.
110 reference(s)
22-xiak_____.nota.t.
107 reference(s)
23-xiac_____.nota.t.
103 reference(s)
24-LOG_xiMc.11
103 reference(s)
25-Informations_AboutPicturesAnimationsAndFiles.01.Ang
102 reference(s)
26-An2000.01.Fra
97 reference(s)
27-ChatGPT.01.Ang
95 reference(s)
28-Informations_GoodNewsAndBadNews.01.Ang
93 reference(s)
29-Informations_GoodNewsAndBadNews.01.Fra
92 reference(s)
30-ChatGPT.01.Fra
85 reference(s)
31-IAGenerativesImages.01.Fra
84 reference(s)
32-MouvementsRelatifs_et_ObservationsAstronomiques.01.Fra
80 reference(s)
33-Galerie_NumbersAndLight.FV
77 reference(s)
34-Galerie_CollaborativeWorks..FV
77 reference(s)
35-AVirtualSpaceTimeTravelMachine.Fra
77 reference(s)
36-MathematiquesPhysiqueFractales.02
75 reference(s)
37-IAGenerativesImages.01.Ang
75 reference(s)
38-EntrelacsIntertwinings.01.Fra
74 reference(s)
39-HughEverettMultiverse.01.Ang
71 reference(s)
40-Fractal.21
69 reference(s)
41-Fractal.01
69 reference(s)
42-xiirC_____.nota.t.
68 reference(s)
43-Multivers.01.Ang
68 reference(s)
44-DEuclideAuGPS.01.Fra
67 reference(s)
45-UlamSpiral.01.Fra
66 reference(s)
46-Multivers.01.Fra
66 reference(s)
47-LesCourbesRemplissantes.01.Fra
65 reference(s)
48-Le_Chat.01.Fra
65 reference(s)
49-FloatingPointNumbers.01.Fra
64 reference(s)
50-MartiensEtMathematiques.01.Ang
63 reference(s)
51-FloatingPointNumbers.01.Ang
62 reference(s)
52-DecimalesPi_100000.vv
62 reference(s)
53-ChatGPT.11.Ang
62 reference(s)
54-MartiensEtMathematiques.01.Fra
61 reference(s)
55-Informations_AboutPicturesAnimationsAndFiles.01.Fra
60 reference(s)
56-DeepSeek.01.Fra
60 reference(s)
57-Bard.01.Fra
60 reference(s)
58-IrreversibiliteDuTempsNumerique.01.Fra
59 reference(s)
59-GenieLogiciel.01.Fra
59 reference(s)
60-DEuclideAuGPS.01.Ang
59 reference(s)
61-xrC_____CompressionDeCompression_Compression.01.vv.c.
58 reference(s)
62-MouvementBrownien.01.Ang
58 reference(s)
63-HughEverettMultiverse.01.Fra
58 reference(s)
64-Galerie_Animations.FV
58 reference(s)
65-Fractal.11
58 reference(s)
66-An2000.01.Ang
58 reference(s)
67-subject.01.
57 reference(s)
68-NDimensionalDeterministicFractalSets.01.Fra
57 reference(s)
69-Le_Chat.01.Ang
57 reference(s)
70-ExpV_VirE.Fra
57 reference(s)
71-DeLAxiomeDesParallelesAuGPS.01.Ang
57 reference(s)
72-NombresPremiers_10000.vv
56 reference(s)
73-create.03.
55 reference(s)
74-AProposSite.01.Fra
55 reference(s)
75-RealNumbers.01.Fra
54 reference(s)
76-Galerie_NonDeterministicFractalGeometryNaturalPhenomenonSynthesis.FV
54 reference(s)
77-xiaf_____.nota.t.
53 reference(s)
78-Kepler.02.
53 reference(s)
79-ImagesDuVirtuel.01.Fra.FV
53 reference(s)
80-GoldenTriangle.01.Ang
53 reference(s)
81-Galerie_ArtisticCreation.FV
53 reference(s)
82-De_L_EnseignementAssisteParOrdinateur_a_L_ExperimentationVirtuelle.01.Fra
53 reference(s)
83-catalogue.11
52 reference(s)
84-present.01.
51 reference(s)
85-DecimalesPi_1_100.vv
51 reference(s)
86-AQuoiServentLesMathematiques.01
51 reference(s)
87-PerteDeLAssociativite.01
50 reference(s)
88-NombresEtLumiere.02.vv.Ang
50 reference(s)
89-Galerie_ArtAndScience.FV
50 reference(s)
90-Galerie_PALETTES_C
49 reference(s)
91-Galerie_DeterministicFractalGeometry.DIAPO.0031
49 reference(s)
92-DecimalesDePi.01.Fra
49 reference(s)
93-VCcatalogue.11
48 reference(s)
94-VAcatalogue.11
48 reference(s)
95-SurfaceProjector.01.Ang
48 reference(s)
96-Galerie_DeterministicFractalGeometry.FV
48 reference(s)
97-ExpV_VirE.11
48 reference(s)
98-VirtualChaos.01.Fra
47 reference(s)
99-NatureDesMathematiques.01.vv.Fra
47 reference(s)
100-MouvementBrownien.01.Fra
47 reference(s)
101-Galerie_NumberTheory.FV
47 reference(s)
102-Galerie_NewPictures
47 reference(s)
103-Galerie_CelestialMechanics.FV
47 reference(s)
104-Galerie_BestOf.FV
47 reference(s)
105-DieuScience.01.Fra
47 reference(s)
106-xrC_____DeCompressionOptimale.01.vv.c.
46 reference(s)
107-SIlVousPlaitDessineMoiLInfini.01.Fra
46 reference(s)
108-NDimensionalDeterministicFractalSets.01.Ang
46 reference(s)
109-IrreversibiliteDuTempsNumerique.01.Ang
46 reference(s)
110-Galerie_IdMCNRS.FV
46 reference(s)
111-ComplexiteStructurelleClassements.11
46 reference(s)
112-infinity.01.vv
45 reference(s)
113-LesNombresTranscendants.01.Ang
45 reference(s)
114-Galerie_Astrophysics.FV
45 reference(s)
115-Downloading.01.vv
45 reference(s)
116-DieuScience.01.Ang
45 reference(s)
117-DeLAxiomeDesParallelesAuGPS.01.Fra
45 reference(s)
118-Commentaires_EspaceLyapunovComplexe.01
45 reference(s)
119-LeParadoxeDeFermi.01.Ang
44 reference(s)
120-GoldenTriangle.01.Fra
44 reference(s)
121-Galerie_NewPictures.FV
44 reference(s)
122-Galerie_ImagesDesMathematiques.FV
44 reference(s)
123-Bard.01.Ang
44 reference(s)
124-PourLaScience.01.Fra
43 reference(s)
125-LesNombresTranscendants.01.Fra
43 reference(s)
126-LeParadoxeDeFermi.01.Fra
43 reference(s)
127-Galerie_GeneralitiesVisualization.FV
43 reference(s)
128-AnimFractal.01.
43 reference(s)

And now, enjoy visiting A Virtual Space-Time Travel Machine.




Copyright © Jean-François COLONNA, -2025.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, -2025.