Statistical Mechanics and Particle Systems

[

Jean-François COLONNA

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France

[

[

[

(CMAP28 WWW site: this page was created on 11/30/2001 and last updated on 01/10/2021 14:03:57 -CET-)

- Bidimensional Random Walks [
*Marches Aléatoires Bidimensionnelles*]:
When displaying the gravity center of a set of particles, its trajectory can hide one or
more of these particles.
In this case, the written number of particles seems to be wrong: but it is not!
- Tridimensional Random Walks [
*Marches Aléatoires Tridimensionnelles*]: - Bidimensional Billiards [
*Billards Bidimensionnels*]:
When displaying the gravity center of a set of particles, its trajectory can hide one
or more of these particles.
In this case, the written number of particles seems to be wrong: but it is not!
- Perfect Impacts [
*Chocs Parfaits*]: - Tridimensional Billiards [
*Billards Tridimensionnels*]: - Bidimensional Diffusion [
*Diffusion Bidimensionnelle*]: - Tridimensional Diffusion [
*Diffusion Tridimensionnelle*]: - Bidimensional Brownian Motion [
*Mouvement Brownien Bidimensionnel*]: - Tridimensional Brownian Motion [
*Mouvement Brownien Tridimensionnel*]: - Bidimensional Diffusion Limited Aggregations and Fractal Aggregates [
*DLAs et Agrégats Fractals Bidimensionnels*]: - Fractal Diffusion Front in a Bidimensional Medium [
*Front Fractal de Diffusion dans un Milieu Bidimensionnel*]: - Tridimensional Diffusion Limited Aggregations Fractal Aggregates [
*DLAs et Agrégats Fractals Tridimensionnels*]: - Bidimensional Fluids [
*Fluides Bidimensionnels*]: - Tridimensional Fluids [
*Fluides Tridimensionnels*]: - Thermodynamics [
*Thermodynamique*]: - Bidimensional Spin Networks [
*Réseaux Bidimensionnels de Spins*]:
[More information about the Bidimensional Ising Model
-en français/in french-]
- Tridimensional Spin Networks [
*Réseaux Tridimensionnels de Spins*]:
[More information about the Tridimensional Ising Model
-en français/in french-]

The random walk of photons escaping the Sun. |

Isotropic random walk of 64 particles on a tridimensional square lattice. |
Isotropic random walk of 64 particles on a tridimensional square lattice. |

Bidimensional rectangular billiard. |

Artistic view of the trajectories of 12 -initially- still particles submitted to an attractive central field of gravity in a tridimensional billiard. |

The irreversibility of the numerical bidimensional billiard. |
Bidimensional domino effect. |

Tridimensional billiard with 12 -initially- still particles submitted to an attractive central field of gravity. |
Tridimensional domino effect. |

A gradient of 114299 particles obtains by means of a tridimensional diffusion process. |
A gradient of 128312 particles obtains by means of a tridimensional diffusion process. |

10.000 random digits -base 10- displayed as an 'absolute' bidimensional random walk. |

Tridimensional accumulation of 512 correlated bidimensional brownian motions -1000 time steps-. |
Tridimensional accumulation of 512 correlated bidimensional brownian motions -50000 time steps-. |

Tridimensional accumulation of 512 correlated tridimensional brownian motions -1000 time steps-. |
Tridimensional accumulation of 512 correlated tridimensional brownian motions -50000 time steps-. |

Bidimensional fractal aggregates obtained by means of pasting during collisions with display of the velocity histogram. |

The front of a forest fire -white- obtained by means of a bidimensional random walk process (bird's-eye view). |

Tridimensional fractal aggregate with variable fractal dimension -increasing from front to back-. |

A tridimensional periodical fluid with display of velocity histograms. |

Expansion of a gas inside a bidimensional rectangular box with display of velocity histograms. |
Expansion of a gas inside a bidimensional circular box with display of velocity histograms. |

A porous membrane with following initial conditions: high temperature particles at left and low temperature particles at right. |

[

Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2001-2021.