Generalities about Visualization

[

Jean-François COLONNA

jean-francois.colonna@polytechnique.edu

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France

[

[

[

(CMAP28 WWW site: this page was created on 03/15/2000 and last updated on 07/13/2016 15:59:51 -CEST-)

- Curve Visualization [
*Visualisation de Courbes*]: - Surface Visualization [
*Visualisation de Surfaces*]: - Tridimensional Manifold Visualization [
*Visualisation de Variétés Tridimensionnelles*]: - Tridimensional Visualization of Bidimensional Scalar Fields [
*Visualisation de Champs Scalaires Bidimensionnels*]: - Visualization of Tridimensional Scalar Fields [
*Visualisation de Champs Scalaires Tridimensionnels*]: - Visualization of Tridimensional Vector Fields [
*Visualisation de Champs de Vecteurs Tridimensionnels*]: - Visualization of Bidimensional Time-Dependent Scalar Fields [
*Visualisation de Champs Scalaires Bidimensionnels Dépendant du Temps*]: - Visualization of Tridimensional Time-Dependent Scalar Fields [
*Visualisation de Champs Scalaires Tridimensionnels Dépendant du Temps*]: - Enhancement of the Third Dimension -Fog, Depth of Field, Lighting,...- [
*Améliorations de la Perception de la Troisième Dimension -Brouillard, Profondeur de Champ, Eclairage,...-*]: - Stereograms [
*Stéréogrammes*]: - Autostereograms [
*Autostéréogrammes*]:
[more information]
- Autostereograms of a Volcano [
*Autostéréogrammes d'un Volcan*]: - Autostereograms of Quaternionic Julia Sets [
*Autostéréogrammes d'Ensembles de Julia Calculés dans le Corps des Quaternions*]: - More Autostereograms [
*Autres Exemples d'Autostéréogrammes*]: - Anaglyphs [
*Anaglyphes*]: - Fourth Dimension Visualization [
*Visualisation de la Quatrième Dimension*]: - N-Dimensional Space Visualization [
*Visualisation d'Espaces à N Dimensions*]: - Time Visualization [
*Visualisation du Temps*]: - Relative Motions, Points of View and Virtual (or Subjective) Chaos [
*Mouvements Relatifs, Points de Vue et Chaos Virtuel (ou Subjectif)*]: - Optical Illusions and Various Problems [
*Illusions d'optique et Problèmes Divers*]:

A Part of the DNA double helix. |

A twisting rope. |

3-foil knot. |

A one sheet hyperboloid of revolution -negative curvature-. |
A plane -zero curvature-. |
A sphere -positive curvature-. |

A Lissajous surface. |
A Lissajous surface. |
A Lissajous surface. |
A Lissajous surface in motion. |
A twisting Lissajous surface. |

Archimedian gaussian surface (bird's-eye view). |

Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (bidimensional computation). |

A fractal landscape. |
Wavelet transform of a bidimensional fractal field. |

Black and white display of a tridimensional function. |
Black and white display of a tridimensional function. |
Color display of a tridimensional function. |
Color display of a tridimensional function. |

Dynamics of a bidimensional fractal structure. |
Tridimensional fractal structure. |

Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (tridimensional computation). |

Cauliflowers, seaweeds, shells,... with fog. |

Depth of field effect. |
Depth of field effect with motion blur. |
A 'spiraling plane' defined by means of three bidimensional fields with depth of field effect. |

Close-up on a pseudo-octonionic Mandelbrot set (a 'Mandelbulb') for sixteen different lightings -tridimensional cross-section-. |

A set of 4x3 stereograms of a fractal-fractal tree. |

A set of 4x3 stereograms of a fractal Notre-Dame de la Garde, Marseilles. |

[do you want to know how to generate an autostereogram with a C test program?]

Anaglyph -blue=right, red=left- of a fractal Notre-Dame de la Garde, Marseilles. |

Anaglyph -green=right, red=left- of a tridimensional display of the Mandebrot set. |

Hypercube. |

N-dimensional random structure. |
N-dimensional random structure. |

Tridimensional display of the dynamics of the bidimensional John Conway's life game. |
Tridimensional display of the dynamics of the bidimensional John Conway's life game. |

N-body problem integration (N=10) displaying the actual Solar System with its simultaneous 2.pi rotation. |
The Solar System with a dark blue virtual planet -virtual planet point of view-. |

Tridimensional visualization of a bidimensional turbulent flow. |

A shell (Jeener surface 1) in motion. |
The Klein bottle in motion. |
An arbitrary surface (Jeener surface 2) in motion. |
A Lissajous surface in motion. |
The Lorenz attractor in motion. |

Synthesis of tridimensional textures. |
Dynamics of a bidimensional fractal structure. |

2 identical grey squares moving over a grey scale. |
Two identical grey rectangles in front of a grey scale. |
A uniform grey stripe on a grey scale. |
The Sierpinski carpet -iteration 5-. |

Black dots (inside random white squares) on a square lattice. |
Zollner optical illusion. |

Geometrical distorsion. |
Geometrical distorsion. |
Geometrical distorsion. |

Three ghost squares. |

Vibrations 0001. |
Vibrations 0002. |
Vibrations 0003. |

Heap or hole? |
Cube "in" or cube "out"? |
Perspective anomaly with the RGB cube. |

Artistic view of a bidimensional texture obtained by means of the self-transformation of a fractal process. |

The same bidimensional scalar field displayed with 4 different color palettes. |

The 1.000 first digits -base 10- of 'pi' displayed on an helix. |
The 1.000 first digits -base 10- of 'pi' displayed on an helix. |

The connexity of the Mandelbrot set. |
The connexity of the Mandelbrot set. |

Bidimensional clouds or height field. |
Different modes of representation of a tridimensional cross-section of a Quaternionic Julia set. |

The defaults of the JPEG encoding. |

Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2000-2016.