Definition and Animation of Bi- and Tridimensional Manifolds
by Means of Pseudo-Projections,

Picture Self-Transformations






Jean-François COLONNA

www.lactamme.polytechnique.fr

jean-francois.colonna@polytechnique.edu
CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
france telecom, France Telecom R&D

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Do you believe that Real Numbers exist for a computer and that floating point computations are safe? [Croyez-vous que les Nombres Réels existent dans un ordinateur et que les calculs flottants sont sûrs?]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find thousands of pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 12/24/2004 and last updated on 04/02/2021 10:21:33 -CEST-)



[en français/in french]


Abstract: Tridimensional surfaces -bidimensional manifolds- can be defined by means of three matrices and then by means of three grey scale pictures -or again one color picture-. An arbitrary dynamics of a tridimensional surface could then be defined by means of an animation. This can be extended to higher dimensions and used to define picture self-transformation methods.


Keywords: Holographic Principle, Pseudo-Projection, Tridimensional Surfaces, Bidimensional Manifolds, Tridimensional Manifolds, Picture Self-Transformations.



Contents of this page:


Copyright © Jean-François Colonna, 2004-2021.
Copyright © France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2004-2021.