Gallery:

The 400 Most Recent Computed Pictures on Saturday August 10 2019

[Galerie: Les 400 Images calculées les plus récentes à la date du Samedi 10 Août 2019]






Jean-François COLONNA

www.lactamme.polytechnique.fr

jean-francois.colonna@polytechnique.edu
CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
france telecom, France Telecom R&D

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K bug [Le bug de l'an 2000]]
[Do you believe that Real Numbers exist for a computer and that floating point computations are safe?]
[Please, visit A Virtual Space-Time Travel Machine, the place where you can find thousands of pictures and animations between Art and Science]

[The visual version of this page [La version visuelle de cette page]]
(CMAP28 WWW site: this page was created on 03/15/2000 and last updated on 08/10/2019 10:30:55 -CEST-)

  • The 400 most recent computed pictures (among 7624) on 08/10/2019 [Les 400 Images calculées les plus récentes (parmi 7624) le 10/08/2019]:
  • (The first one -top left- is the most recent [La première -en haut et à gauche- est la plus récente])

  • A tribute to Sandro Botticelli.
  • A tribute to Sandro Botticelli.
  • The Continuum Hypothesis (CH) -an allegory-.
  • Impossible structure.
  • Paradoxal structure -from Order to Disorder-.
  • Quadruple impossible staircase built by means of a paradoxal structure -a tribute to Maurits Cornelis Escher-.
  • Impossible structure.
  • Maurits Cornelis Escher meets Piet Mondrian.
  • Bidimensional self-Portrait -a tribute to Victor Vasarely-.
  • Tridimensional self-Portrait -a tribute to Victor Vasarely-.
  • Bidimensional self-Portrait -a tribute to Victor Vasarely-.
  • Intertwining based on the geometry of the Boy surface.
  • Intertwining based on the geometry of the Boy surface.
  • No Title 0295 -a tribute to Victor Vasarely.
  • No Title 0294 -a tribute to Victor Vasarely.
  • Tridimensional high resolution visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Tridimensional high resolution visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • No Title 0293 -a tribute to Pierre Soulages.
  • A blue sponge-tree -a tribute to Yves Klein-.
  • Tridimensional high resolution visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Tridimensional high resolution visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Dissonance chaude/Dissonance froide -a tribute to Paul Sérusier-.
  • A new Rose for Notre-Dame de Paris.
  • Notre-Dame de Paris -a tribute-.
  • Notre-Dame de Paris on fire -the hell fire-.
  • Fractal Notre-Dame de Paris -a tribute-.
  • The Syracuse conjecture for U(0)={1,2,3,4,...,128} -monodimensional display of the parities-.
  • Zoom in on a pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • Zoom in on a pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-.
  • Zoom in on a pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-.
  • Zoom in on a pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-.
  • Pseudo-octonionic Julia sets along the border of the Mandelbrot set -tridimensional cross-sections-.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) and with a 0 to pi rotation about the X axis -tridimensional cross-section-.
  • Iterations in the complex plane: the computation of the Mandelbrot set.
  • The 130.643 first digits -base 6- of a random number displayed as an 'absolute' tridimensional random walk.
  • The 217.156 first digits -base 6- of a 'Champernowne number' like (=0.2 3 5 7 11 13 17 19 23 29 31 37 41...) -using all prime numbers- displayed as an 'absolute' tridimensional random walk.
  • No Title 0292.
  • The Jeener flower.
  • The interlaced hypocycloidal Jeener bottle.
  • The interlaced epicycloidal Jeener bottle.
  • The interlaced epicycloidal Jeener bottle.
  • The interlaced epicycloidal Jeener bottle.
  • No Title 0291.
  • Detail close-up of the quaternionic Julia set -degree=2- computed -pseudo-addition and pseudo-multiplication in C- with A=(-0.58...,+0.63...,0,0) and with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • Detail close-up of the quaternionic Julia set -degree=2- computed -pseudo-addition and pseudo-multiplication in C- with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-.
  • Tridimensional 'smooth' fractal surface with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • No Title 0290.
  • Intertwining.
  • Intertwining.
  • The Continuum Hypothesis (CH).
  • Artistic view of a sphere.
  • No Title 0289.
  • Artistic view of a 'tridimensional epicycloïdal' pseudo-torus.
  • Artistic view of the Jeener's quintuple Klein bottle.
  • Artistic view of the Klein bottle.
  • Artistic view of the Möbius strip.
  • No Title 0287.
  • The quaternionic Julia set -degree=2- computed -pseudo-addition and pseudo-multiplication in C- with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-.
  • Victor Vasarely meets Piet Mondrian.
  • Two bidimensional hexagonal networks with an angular shift of 1.1 degree.
  • The Jeener's quintuple Klein bottle with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • The Jeener's quintuple Klein bottle.
  • No Title 0286.
  • The quaternionic Julia set -degree=2- computed -pseudo-addition and pseudo-multiplication in C- with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-.
  • The quaternionic Julia set -degree=2- computed -pseudo-addition and pseudo-multiplication in C- with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-.
  • The quaternionic Julia set -degree=2- computed -pseudo-addition and pseudo-multiplication in C- with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-.
  • The quaternionic Julia set -degree=2- computed -pseudo-addition and pseudo-multiplication in C- with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-.
  • The quaternionic Julia set -degree=2- computed -pseudo-addition and pseudo-multiplication in C- with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-.
  • The quaternionic Julia set -degree=2- computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-.
  • No Title 0285.
  • Autostereogram of a quaternionic Julia set -tridimensional cross-section-.
  • The anniversary of CNRS.
  • No Title 0284.
  • Tridimensional display of the particle trajectories of bidimensional fractal aggregates obtained by means of a 100% pasting process during collisions of particles submitted to an attractive central field of gravity.
  • No Title 0283.
  • A sphere computed with the 'max-plus' arithmetic (maximum,addition).
  • No Title 0282.
  • No Title 0281.
  • No Title 0280.
  • No Title 0279.
  • No Title 0278.
  • 20 evenly distributed points on a sphere by means of simulated annealing.
  • A random permutation of pixel blocks of a Self-Portrait.
  • No Title 0277.
  • No Title 0276.
  • No Title 0275.
  • Close-up on a pseudo-octonionic Mandelbrot set (a 'Mandelbulb') with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0) and with a rotation about the Y axis and with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • An extended Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • The intersection of the Menger sponge -iteration 5- and of a quadridimensional Calabi-Yau manifold -tridimensional representation- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A 'conic' cross-section inside the Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A 'conic' cross-section inside the Menger sponge -iteration 5-, 'O temps tes pyramides' -a tribute to Jorge Luis Borges-.
  • A 'double conic' cross-section inside the Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A 'double conic' cross-section inside the Menger sponge -iteration 5-, 'O temps tes pyramides' -a tribute to Jorge Luis Borges-.
  • My own quadruple impossible staircase -a tribute to Maurits Cornelis Escher-.
  • A pseudo-periodical Penrose tiling of the plane -a tribute to Piet Mondrian and Roger Penrose-.
  • Light clouds at sunset.
  • Artistic view of an hexagonal tiling of the hyperbolic Poincaré disk -iteration 5-, -a tribute to Henri Poincaré-.
  • Quaternionic butterfly with extended arithmetics -a tribute to Laurent Schwartz-.
  • My own triple impossible staircase -a tribute to Maurits Cornelis Escher-.
  • From geocentrism to 'Neptune-centrism' -a tribute to Nicolas Copernic-.
  • The Scream -a Tribute to Edvard Munch-.
  • A 'pyramidal' cross-section inside the Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-, 'O temps tes pyramides' -a tribute to Jorge Luis Borges-.
  • A 'pyramidal' cross-section inside the Menger sponge -iteration 5-, 'O temps tes pyramides' -a tribute to Jorge Luis Borges-.
  • A random permutation of pixel blocks of a pseudo-periodical Penrose tiling of the plane.
  • A random permutation of pixel blocks of a bidimensional field.
  • No Title 0274.
  • Heterogeneous -tridimensional fractal field- random meshing of a cube.
  • Two tridimensional 'smooth' fractal surfaces.
  • Tridimensional 'smooth' fractal surface.
  • Tridimensional fractal surface (bird's-eye view).
  • Fractal Self-Portrait -a tribute to René Magritte-.
  • Fractal Self-Portrait -a tribute to René Magritte-.
  • Fractal Self-Portrait -'Décalcomanie', a tribute to René Magritte-.
  • N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite) computed with 2 different optimization options on the same computer (sensitivity to rounding-off errors).
  • N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite) computed with 2 slightly different sets of initial conditions (sensitivity to initial conditions).
  • The Ptolemaic system with a small light grey circle -the epicycle- whose center describes a larger dark grey circle -the deferend- centered on the Earth -blue sphere-.
  • Some of the most beautiful fractal pictures.
  • From the infinitely small -bottom left- to the infinitely big -top right-.
  • Light cloud dynamics -this sequence being periodical-.
  • The construction process of the Menger sponge.
  • The construction process of the Sierpinski carpet.
  • The dynamics of the diffusion process in a bidimensional medium obtained by means of a random walk process.
  • Bidimensional fractal aggregates obtained by means of a 100% pasting process during collisions of particles submitted to an attractive central field of gravity.
  • Bidimensional zoom in on the Mandelbrot set.
  • The self-similarity of the von Koch curve displayed by means of a zoom in with a ratio that is equal to 3.
  • An amazing cross-section inside an extended Menger sponge -iteration 5-.
  • An extended Menger sponge -iteration 5-.
  • A parallelepipedic extended Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • No Title 0272.
  • A half-random extended Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A half-random extended Menger sponge -iteration 5-.
  • A half-random extended Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A half-random extended Menger sponge -iteration 5-.
  • A full-random extended Menger sponge -iteration 5-.
  • An extended Menger sponge -iteration 5-.
  • An extended Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • An extended Menger sponge -iteration 5-.
  • An extended Menger sponge -iteration 5-.
  • An extended Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • An extended Menger sponge -iteration 5-.
  • A thin double spherical cross-section inside the Menger sponge -iteration 5-.
  • Recursive subdivision of four Golden Rectangles -a tribute to Piet Mondrian-.
  • Recursive subdivision of the Golden Rectangle by means of the Golden Ratio -phi-.
  • Self-Portrait -a tribute to Pablo Picasso-.
  • Self-Portrait -a tribute to Pablo Picasso-.
  • An hexagonal tiling of the hyperbolic Poincaré disk -iteration 5- -a tribute to Piet Mondrian and Henri Poincaré-.
  • A pseudo-periodical Penrose tiling of the Golden Decagon -a tribute to Piet Mondrian and Roger Penrose-.
  • An amazing cross-section inside an extended Menger sponge -iteration 3-.
  • An extended Menger sponge -iteration 3-.
  • A double spherical cross-section inside the Menger sponge -iteration 5-.
  • The Sierpinski carpet -iteration 3- with colors -a tribute to Karl Menger and Piet Mondrian-.
  • Intertwining -a tribute to Piet Mondrian-.
  • No Title 0271 -a tribute to Vassily Kandinsky-.
  • No Title 0269 -a tribute to Piet Mondrian-.
  • A pseudo-periodical Penrose tiling of the plane -a tribute to Piet Mondrian and Roger Penrose-.
  • No Title 0267 -a tribute to Piet Mondrian-.
  • No Title 0266 -a tribute to Vassily Kandinsky-.
  • No Title 0265 -a tribute to Vassily Kandinsky-.
  • Metropolis -a tribute to Fritz Lang-.
  • Black Star -a tribute to George Lucas-.
  • A spherical cross-section inside the Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A spherical cross-section inside the Menger sponge -iteration 5-.
  • The Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • An amazing generalized cross-section inside the Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • An amazing generalized cross-section inside the Menger sponge -iteration 5-.
  • The four first power sets {P(E),P(P(E)),P(P(P(E))),P(P(P(P(E))))} of a one-element set E.
  • The intersection of the Menger sponge -iteration 5- and of a quadridimensional Calabi-Yau manifold -tridimensional representation-.
  • The Menger sponge -iteration 5- with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • The Syracuse conjecture for U(0)={1,2,3,4,...,256} -monodimensional display-.
  • A truncated quadrimensional Calabi-Yau manifold with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • Tridimensional representation of a quadridimensional Calabi-Yau manifold.
  • Tridimensional fractal structure.
  • Tridimensional fractal structure.
  • Tridimensional fractal structure.
  • Tridimensional fractal structure.
  • No Title 0264.
  • A tridimensional cubic mesh with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • Tridimensional display of a pseudo-periodical Penrose tiling of the plane with a fractal noise.
  • The Penrose city.
  • A pseudo-periodical Penrose tiling of the plane.
  • Close-up on a foggy pseudo-quaternionic Mandelbrot set with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • Close-up on a foggy pseudo-quaternionic Mandelbrot set (a 'MandelBulb') -tridimensional cross-section-.
  • A 'triple stack' of two pseudo-periodical Penrose tilings of the plane.
  • A tridimensionally distorded pseudo-periodical Penrose tiling of the plane.
  • A tridimensionally distorded pseudo-periodical Penrose tiling of the plane.
  • A pseudo-periodical Penrose tiling of the plane.
  • A pseudo-periodical Penrose tiling of the plane.
  • Close-up on a foggy pseudo-quaternionic Mandelbrot set (a 'MandelBulb') -tridimensional cross-section-.
  • Close-up on a foggy pseudo-quaternionic Mandelbrot set with a (1/O)^2 conformal transformation in the Octonionic space -tridimensional cross-section-.
  • Close-up on a foggy pseudo-quaternionic Mandelbrot set with a (1/O)^1 conformal transformation in the Octonionic space -tridimensional cross-section-.
  • Close-up on a foggy pseudo-quaternionic Mandelbrot set (a 'MandelBulb') -tridimensional cross-section-.
  • Wavelet transform of a bidimensional fractal field.
  • The end of the World.
  • Close-up on a foggy pseudo-quaternionic Mandelbrot set with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • Close-up on a foggy pseudo-quaternionic Mandelbrot set (a 'MandelBulb') -tridimensional cross-section-.
  • A foggy pseudo-quaternionic Mandelbrot set (a 'MandelBulb') -tridimensional cross-section-.
  • A foggy pseudo-octonionic Mandelbrot set (a 'MandelBulb') -tridimensional cross-section-.
  • A truncated tridimensional torus with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A truncated tridimensional torus with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • No Title 0263.
  • A truncated tridimensional sphere with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • No Title 0262.
  • A truncated tridimensional sphere with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A truncated tridimensional sphere with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A truncated tridimensional sphere with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A tridimensional cubic mesh with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A tridimensional cubic mesh with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • No Title 0261.
  • An helix on a 'tridimensional epicycloïdal' pseudo-torus.
  • An helix on a 'tridimensional epicycloïdal' pseudo-torus.
  • An helix on a torus.
  • No Title 0260.
  • An helix on a 'crumpled' sphere.
  • Two helices on the Bonan-Jeener's triple Klein bottle.
  • Tridimensional accumulation of 50 non correlated tridimensional brownian motions -50000 time steps-.
  • Tridimensional accumulation of 10 non correlated tridimensional brownian motions -50000 time steps-.
  • Tridimensional accumulation of 512 strongly correlated tridimensional brownian motions -50000 time steps-.
  • Tridimensional accumulation of 512 correlated tridimensional brownian motions -50000 time steps-.
  • No Title 0259.
  • Bidimensional brownian motion -the colors used (magenta,red,yellow,green,cyan) are an increasing function of the time-.
  • Bidimensional brownian motion -the colors used (magenta,red,yellow,green,cyan) are an increasing function of the time-.
  • No Title 0257.
  • No Title 0256.
  • An helix on the Klein bottle.
  • An helix on a sphere.
  • A 'tridimensional epicycloïdal' pseudo-torus.
  • Arrival -a tribute to the 2016 Denis Villeneuve's movie thanks to a pseudo-quaternionic Julia set-.
  • A foggy pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0) and with a rotation about the Y axis -tridimensional cross-section-.
  • The 65.536 first digits -base 3- of 'pi' -the first 'digit' is the top left red square-.
  • A 'tridimensional epicycloïdal' pseudo-torus.
  • No Title 0255.
  • A quoi servent les Mathématiques?.

  • New Book
  • A 'thick' helix.
  • A 'bidimensional epicycloïdal' pseudo-torus.
  • A 'bidimensional epicycloïdal' pseudo-torus.
  • A two-hole pseudo-torus.
  • No Title 0253.
  • An octogonal tiling of the hyperbolic Poincaré disk -iteration 5-.
  • Tridimensional accumulation of 512 correlated bidimensional brownian motions -50000 time steps-.
  • Tridimensional accumulation of 512 correlated bidimensional brownian motions -1000 time steps-.
  • Tridimensional accumulation of 512 correlated bidimensional brownian motions -1000 time steps-.
  • A binary tree with 4096 leaves.
  • Bidimensional brownian motion -the colors used (magenta,red,yellow,green,cyan) are an increasing function of the time- and its 'external border' -white-.
  • Tridimensional display of two intricated random labyrinths -the wide one and the narrow one-.
  • Two intricated random labyrinths -the wide one and the narrow one-.
  • An hexagonal tiling of the hyperbolic Poincaré disk -iteration 5-.
  • Artistic view of a pseudo-periodical Penrose tiling of the Golden Decagon.
  • Artistic view of a pseudo-periodical Penrose tiling of the Golden Decagon.
  • Tridimensional visualization of a pseudo-periodical Penrose tiling of the Golden Decagon.
  • Some 'natural' patterns inside a fractal texture.
  • A pseudo-periodical Penrose tiling of the Golden Decagon.
  • Paradoxal structure based on the geometry of the Boy surface.
  • Periodical impossible structure.
  • A pseudo-periodical Penrose tiling of the plane.
  • The 146.363 first digits -base 6- of the Champernowne number (=0.1 2 3 4 5 6 7 8 9 10 11 12...) -using all base 10 integer numbers- displayed as an 'absolute' tridimensional random walk.
  • No Title 0252.
  • The Goldbach conjecture.
  • Beyond Pluto.
  • The Mandelbrot set with tridimensional display of the arguments and computed with an increasing exponent, from 1 -bottom left- to 16 -top right-.
  • The double reflection -green- of a small regular tetrahedron -center red-.
  • The 'green' reflection of a red tetrahedron obtained by a 'blue' symmetry of each red vertex about the opposite red face.
  • The 'green' reflection of a red triangle obtained by a 'blue' symmetry of each red vertex about the opposite red side.
  • No Title 0250.
  • Tridimensional high resolution visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Tridimensional high resolution visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • No Title 0248.
  • The RGB cube and the additive synthesis of colors.
  • Artistic view of a quadridimensional Calabi-Yau manifold.
  • Artistic view of a quadridimensional Calabi-Yau manifold.
  • Artistic view of a quadridimensional Calabi-Yau manifold.
  • Bidimensional rectangular billiard with an attractive central obstacle and a flow of 'living' particles.
  • No Title 0247.
  • A random tridimensional binary tree.
  • No Title 0246.
  • A ternary tree.
  • A ternary tree.
  • Particle convection and diffusion inside a tridimensional binary tree model of the human pulmonary acinus without membrane permeability.
  • Particle convection and diffusion inside a tridimensional binary tree model of the human pulmonary acinus with membrane permeability.
  • The golden tree.
  • A binary tree with 256 leaves.
  • A binary tree with 256 leaves.
  • Bidimensional fractal aggregates obtained by means of a 100% pasting process during collisions of particles submitted to an attractive central field of gravity -Jean-François Colonna fractal aggregate-.
  • Gravitation and space-time curvature.
  • A two sheet hyperboloid of revolution.
  • A one sheet hyperboloid of revolution -negative curvature-.
  • No Title 0244.
  • Artistic view of the Cosmic Web (nodes, galaxy clusters, filaments,... including 1.047.312 galaxies) obtained by means of a non deterministic fractal process and with a gigantic hidden Calabi-Yau structure.
  • Artistic view of a fractal Multiverse.
  • No Title 0243.
  • No Title 0242.
  • No Title 0241.
  • Tridimensional localization of a point P its distances to the four vertices of a tetrahedron ABCD being known.
  • No Title 0240.
  • Bidimensional localization of a point P its distances to the three vertices of a triangle ABC being known, the four points being coplanar.
  • The golden tree.
  • No Title 0239.
  • Artistic view of a binary tree with 256 leaves.
  • Artistic view of a sphere.
  • Artistic view of a 3-foil torus knot.
  • The abelian -commutative- group defined on elliptic curves.
  • Mysterious structures in the desert.
  • Artistic view of the Cosmic Web (nodes, galaxy clusters, filaments,...) obtained by means of a non deterministic fractal process.
  • Artistic view of the Cosmic Web (nodes, galaxy clusters, filaments,... including 637.312 galaxies) obtained by means of a non deterministic fractal process.
  • La diagonale du Flou.
  • Mountains and clouds.
  • The 1.000 first digits -base 10- of 'pi' displayed on an helix -good point of view-.
  • Tridimensional Hilbert Curve -iterations 1 to 3-.
  • Bidimensional Hilbert Curve -iterations 1 to 5-.
  • Tridimensional view of the first four iterations of the construction of the von Koch snowflake.
  • The first four iterations of the construction of the von Koch snowflake.
  • The Mathematics are the key of the Multiverse.
  • The tree of life -a Tribute to the victims of the attacks in November 2015, Paris-.
  • Tridimensional visualization of the Verhulst dynamics with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • Tridimensional visualization of the Verhulst dynamics with a tridimensional non linear transformation of the coordinates.
  • Tridimensional visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Tridimensional visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Tridimensional visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Tridimensional visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Tridimensional high resolution visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Tridimensional visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Tridimensional visualization of the Verhulst dynamics -'The Flying Dutchman', a tribute to Richard Wagner-.
  • Tridimensional visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-.
  • Heterogeneous -tridimensional anti-gaussian field- random non linear meshing of a cube.
  • Heterogeneous -tridimensional anti-gaussian field- random non linear meshing of a cube.
  • Heterogeneous -tridimensional gaussian field- random non linear meshing of a cube.
  • Heterogeneous -tridimensional fractal field- random non linear meshing of a cube.
  • No Title 0237.
  • Heterogeneous -tridimensional gaussian field- random meshing of a cube.
  • Heterogeneous -tridimensional anti-gaussian field- random meshing of a cube.
  • Heterogeneous -tridimensional fractal field- random meshing of a cube.
  • Homogeneous random meshing of a cube.
  • Causal set obtained by means of an homogeneous random meshing of a cube.
  • Heterogeneous meshing of a fractal surface.
  • Ile de Science -a tribute to Pierre Vasseur-.
  • Homogeneous/heterogeneous meshing of a square.
  • Heterogeneous meshing of a square.
  • A 'crumpled' cylinder defined by means of three bidimensional fields.
  • Artistic view of the Schaeffer bijection.
  • 'Regular' quadrangulation of the volume of a 'crumpled' sphere -18x18x8-.
  • Regular quadrangulation of the volume of a torus -18x18x18-.
  • Random quadrangulation of the volume of a sphere -18x18x18-.
  • Random quadrangulation of a cube -8x8x8-.
  • Intertwining.
  • The rain (or the snow) is falling.
  • Three ghost squares.
  • A tribute to Sandro Botticelli.
  • No Title 0235.
  • A fractal vegetal structure -'the Knowledge Tree'-.
  • A fractal vegetal structure.
  • Monument Valley at sunrise with light cloud dynamics -this sequence being periodical-.
  • No Title 0234.
  • No Title 0232.
  • Tridimensional representation of a fractal quadridimensional Calabi-Yau manifold -a Tribute to José Hernández-.
  • The sum -top, white- of 96 cosine lines -the 12 first, colors- with the 25 first prime numbers -white vertical lines-.
  • The Eratosthene sieve displaying the integer numbers from 1 to 128.
  • The Ulam spiral with display of the first twin prime numbers ('2-twin' prime numbers).
  • No Title 0231 -a tribute to Philippe Druillet-.
  • An amazing cross-section inside the Menger sponge -iteration 5- with a tridimensional non linear transformation.
  • The Menger sponge -iteration 5- with a tridimensional non linear transformation.
  • The Sierpinski carpet -iteration 5-.
  • The eroded complement of the Menger sponge -iteration 2-.
  • The eroded Menger sponge -iteration 3-.
  • No Title 0229.
  • Tridimensional fractal structure with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A tridimensional fractal structure.
  • A pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) and with a locally variable exponent that is equal to 4, 5 or 6 and with a rotation about the X axis -tridimensional cross-section-.
  • The terraforming of the Moon.
  • Tridimensional brownian motion.
  • The third 'power' of a torus defined by means of three bidimensional fields.
  • No Title 0228.
  • No Title 0226.
  • A linear mixing of a sphere and of a torus defined by means of three bidimensional fields.
  • No Title 0224.
  • The personal liberty.
  • Visualization of the 65536 first integer numbers with at least one '0' -black points- for the bases 2 -lower left- to 17 -upper right-.
  • Hell on Earth -a Tribute to the seventeen victims of the attacks in January 2015, Paris-.
  • No Title 0223.
  • Close-up on a foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) and with a rotation about the X axis and with a tridimensional non linear transformation in the pseudo-octonionic space -tridimensional cross-section-.
  • Close-up on a foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) and with a rotation about the X axis and with a tridimensional non linear transformation in the pseudo-octonionic space -tridimensional cross-section-.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) and with a rotation about the X axis and with a (4xO+1)/(1xO-1) conformal transformation in the pseudo-octonionic space-tridimensional cross-section-.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) and with a rotation about the X axis -tridimensional cross-section-.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) and with a rotation about the X axis -tridimensional cross-section-.
  • Artistic display of a Sudoku grid.
  • An amazing cross-section inside the Menger sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space -tridimensional cross-section-.
  • An amazing cross-section inside the Menger sponge -iteration 5- with a 1/O conformal transformation in the Octonionic space -tridimensional cross-section-.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-.
  • No Title 0222.
  • Close-up on a foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) and with a rotation about the X axis -tridimensional cross-section-.
  • Pi/2 rotation about the X axis of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb') -tridimensional cross-section-.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) and with a rotation about the X axis -tridimensional cross-section-.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-.
  • Close-up on a foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-.
  • Intertwining.
  • A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-.
  • Mountains and fog.
  • No Title 0220.
  • A pseudo-octonionic Mandelbrot set (a 'MandelBulb') -'children's corner' or 'the consciousness emerging from Mathematics'- -tridimensional cross-section-.


  • [Visual access to New Pictures [Accès visuel aux Nouvelles Images]]
    [See the New Pictures Slide Show [Visionnez le Diaporama des Nouvelles Images]]




    Copyright (c) Jean-François Colonna, 2000-2019.
    Copyright (c) France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2000-2019.