A random tiling of a square domain using dominoes (1x2 rectangles) -line after line- with display of clusters of horizontal and vertical rectangles using the 4-connexity [Un pavage aléatoire d'un domaine carré utilisant des dominos (rectangles 1x2) -parcours ligne après ligne- avec visualisation des amas de rectangles horizontaux et verticaux utilisant la 4-connexité].

Please note that this tiling is non periodical, but unfortunately it is not a non periodical tiling of the plane. As a matter of fact in order to generate the line N+1 one must generate the line N before, but this last one has an infinite number of points. Then the line N+1 will never be generated!

This tiling is made respectively of 4086 (49.91%) horizontal and 4100 (50.09%) vertical rectangles, the choice between horizontal and vertical being made at random when possible. The 12 black 1x1 squares display unreachable sites.

[See a C program that is able to compute this picture]

See some related pictures (including this one):

(CMAP28 WWW site: this page was created on 08/13/2023 and last updated on 08/21/2023 17:41:30 -CEST-)

[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]

Copyright © Jean-François COLONNA, 2023-2023.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2023-2023.