Deterministic Chaos

[

Jean-François COLONNA

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France

[

[

[

(CMAP28 WWW site: this page was created on 03/15/2000 and last updated on 10/18/2020 12:36:06 -CEST-)

[More information]

- The Verhulst Dynamics [
*La Dynamique de Verhulst*]: - Bidimensional Verhulst Dynamics [
*Dynamique de Verhulst bidimensionnelle*]: - Tridimensional Verhulst Dynamics [
*Dynamique de Verhulst tridimensionnelle*]: - N-dimensional Verhulst Dynamics [
*Dynamique de Verhulst N-dimensionnelle*]: - The Lorenz Attractor [
*L'Attracteur de Lorenz*]: - Pendulum Systems [
*Systèmes de Pendules*]:
[More information about Pendulum Systems
-en français/in french-]
- The N-Body Problem [
*Le Probleme des N-Corps*]:
[More information about the N-Body Problem
-en français/in french-]
- Iterated Function Systems (IFS) [
*Systèmes de Fonctions Itérées (IFS)*]: - Miscellaneous [
*Divers*]:

Bidimensional display of the rounding-off errors when computing the Verhulst dynamics. |
Tridimensional display of the rounding-off errors when computing the Verhulst dynamics. |

Tridimensional visualizations of the Verhulst dynamics. |

Tridimensional visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-. |
Tridimensional visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-. |

Tridimensional visualization of the Verhulst dynamics -'Time Ships', a tribute to Stephen Baxter-. |

The Lorenz attractor. |
The Lorenz attractor. |
The Lorenz attractor. |
Rotation about the X axis of the Lorenz attractor. |
Rotation about the X axis of the Lorenz attractor. |

The Lorenz attractor -sensitivity to initial conditions (displayed as the central point of each frame)-. |

The Lorenz attractor in motion. |

The Bertrand paradox. |
The Bertrand paradox. |
The extended Bertrand paradox. |

[

Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2000-2020.