A tridimensional Peano-like curve defined with {X5(...),Y5(...),Z5(...)} and based on an 'open' 7-foil torus knot -iteration 5- [Une courbe tridimensionnelle du type Peano définie avec {X5(...),Y5(...),Z5(...)} et basé sur un nœud '7-trèfle' torique 'ouvert' -itération 5-].





The tridimensional Peano-like Curves:

Let's C1(T) being a parametric curve defined by means of 3 real functions of T (T E [0,1]) X1(T) E [0,1], Y1(T) E [0,1] and Z1(T) E [0,1 such as :
                    X1(T=0)=0 Y1(T=0)=0 Z1(T=0)=0 (lower left foreground corner)
                    X1(T=1)=0 Y1(T=1)=0 Z1(T=1)=1 (lower right foreground corner)


Then one defines a sequence of curves Ci(T) (i >= 1) as follows :
                    Ci(T) = {Xi(T),Yi(T),Zi(T)} E [0,1]x[0,1]x[0,1] --> Ci+1(T) = {Xi+1(T),Yi+1(T),Zi+1(T)} E [0,1]x[0,1]x[0,1]

                    if T E [0,1/8[:
                              Xi+1(T) =   Xi(8T-0)
                              Yi+1(T) =   Zi(8T-0)
                              Zi+1(T) =   Yi(8T-0)
                                                   Transformation 1
                    if T E [1/8,2/8[:
                              Xi+1(T) =   Zi(8T-1)
                              Yi+1(T) = 1+Yi(8T-1)
                              Zi+1(T) =   Xi(8T-1)
                                                   Transformation 2
                    if T E [2/8,3/8[:
                              Xi+1(T) = 1+Xi(8T-2)
                              Yi+1(T) = 1+Yi(8T-2)
                              Zi+1(T) =   Zi(8T-2)
                                                   Transformation 3
                    if T E [3/8,4/8[:
                              Xi+1(T) = 1+Zi(8T-3)
                              Yi+1(T) = 1-Xi(8T-3)
                              Zi+1(T) = 1-Yi(8T-3)
                                                   Transformation 4
                    if T E [4/8,5/8[:
                              Xi+1(T) = 2-Zi(8T-4)
                              Yi+1(T) = 1-Xi(8T-4)
                              Zi+1(T) = 1+Yi(8T-4)
                                                   Transformation 5
                    if T E [5/8,6/8[:
                              Xi+1(T) = 1+Xi(8T-5)
                              Yi+1(T) = 1+Yi(8T-5)
                              Zi+1(T) = 1+Zi(8T-5)
                                                   Transformation 6
                    if T E [6/8,7/8[:
                              Xi+1(T) = 1-Zi(8T-6)
                              Yi+1(T) = 1+Yi(8T-6)
                              Zi+1(T) = 2-Xi(8T-6)
                                                   Transformation 7
                    if T E [7/8,1]:
                              Xi+1(T) =   Xi(8T-7)
                              Yi+1(T) = 1-Zi(8T-7)
                              Zi+1(T) = 2-Yi(8T-7)
                                                   Transformation 8

Please note that 8=2d where d=3 is the space dimension.



See a special C1(T) curve in order to understand the geometrical meaning of the 8 transformations and of their order .


See the 5 first Ci(T) curves (i E {1,2,3,4,5}) the first one being an "open" 7-foil torus knot:

See the used color set to display the parameter T.








The bidimensional Peano-like Curves:

Let's C1(T) being a parametric curve defined by means of 2 real functions of T (T E [0,1]) X1(T) E [0,1] and Y1(T) E [0,1 such as :
                    X1(T=0)=0 Y1(T=0)=0 (lower left corner)
                    X1(T=1)=1 Y1(T=1)=0 (lower right corner)


Then one defines a sequence of curves Ci(T) (i >= 1) as follows :
                    Ci(T) = {Xi(T),Yi(T)} E [0,1]x[0,1] --> Ci+1(T) = {Xi+1(T),Yi+1(T)} E [0,1]x[0,1]

                    if T E [0,1/4[:
                              Xi+1(T) =   Yi(4T-0)
                              Yi+1(T) =   Xi(4T-0)
                                                   Transformation 1
                    if T E [1/4,2/4[:
                              Xi+1(T) =   Xi(4T-1)
                              Yi+1(T) = 1+Yi(4T-1)
                                                   Transformation 2
                    if T E [2/4,3/4[:
                              Xi+1(T) = 1+Xi(4T-2)
                              Yi+1(T) = 1+Yi(4T-2)
                                                   Transformation 3
                    if T E [3/4,1]:
                              Xi+1(T) = 2-Yi(4T-3)
                              Yi+1(T) = 1-Xi(4T-3)
                                                   Transformation 4

Please note that 4=2d where d=2 is the space dimension.



See a special C1(T) curve in order to understand the geometrical meaning of the 4 transformations and of their order .


See the 6 first Ci(T) curves (i E {1,2,3,4,5,6}):

See the used color set to display the parameter T.







See various bidimensional Hilbert and Peano curves (possibly including this one):



See the used color set to display the parameter T.  
See the used color set to display the parameter T.  
See the used color set to display the parameter T.  
See the used color set to display the parameter T.  
See the used color set to display the parameter T.


See various tridimensional Hilbert and Peano curves (possibly including this one):



See the used color set to display the parameter T.  
See the used color set to display the parameter T.  
See the used color set to display the parameter T.  
See the used color set to display the parameter T.  
See the used color set to display the parameter T.  
See the used color set to display the parameter T.  
See the used color set to display the parameter T.  
See the used color set to display the parameter T.

 
 
 



(CMAP28 WWW site: this page was created on 05/17/2022 and last updated on 06/01/2022 09:08:09 -CEST-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]
[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François Colonna, 2022-2022.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2022-2022.