A pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) and with a locally variable exponent that is equal to 4, 5 or 6 and with a rotation about the X axis -tridimensional cross-section- [Un ensemble de Julia dans l'ensemble des pseudo-octonions (comme un 'MandelBulb': un 'JuliaBulb') calculé pour A=(-0.581514...,+0.635888...,0,0,0,0,0,0) et avec un exposant variable localement valant 4, 5 ou 6 et avec une rotation autour de l'axe X -section tridimensionnelle-].




This Julia set is a tridimensional cross-section and was computed with a polynomial 'P' of the first degree and the following eight functions (where the exponent E as well as the multiplicative factor E are also called the degree):
                    
                    P(o) = 1*o + {-0.5815147625160462,+0.6358885017421603,0,0,0,0,0,0}
                    
                                       E
                    fR(R ,R ) = (R *R )
                        1  2      1  2
                    
                    fA1(A1 ,A1 ) = E*(A1 +A1 )
                          1   2         1   2
                    
                    fA2(A2 ,A2 ) = E*(A2 +A2 )
                          1   2         1   2
                    
                    fA3(A3 ,A3 ) = E*(A3 +A3 )
                          1   2         1   2
                    
                    fA4(A4 ,A4 ) = E*(A4 +A4 )
                          1   2         1   2
                    
                    fA5(A5 ,A5 ) = E*(A5 +A5 )
                          1   2         1   2
                    
                    fA6(A6 ,A6 ) = E*(A6 +A6 )
                          1   2         1   2
                    
                    fA7(A7 ,A7 ) = E*(A7 +A7 )
                          1   2         1   2
with:
                    
                     = IntegerPart(FractalFunction(x,y,z,...)  [4,6])



See bidimensional cross-sections inside the space defining the integer exponent (4=black, 5=green, 6=white -very very rare-):




[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]

[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[Plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]


(CMAP28 WWW site: this page was created on 03/06/2015 and last updated on 09/05/2024 14:22:25 -CEST-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[See the following comment(s): octonionic numbers, pseudo-octonionic numbers, Julia set [Voir le(s) commentaire(s) suivant(s): octonions, pseudo-octonions, ensemble de Julia]]
[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2015-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2015-2024.