click to view the MPEG movie (cliquez pour voir le film MPEG)

2.pi rotation about the Y axis of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb') -tridimensional cross-section- [Rotation de 2.pi autour de l'axe Y d'un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb': un 'JuliaBulb') -section tridimensionnelle-].




This Julia set is a tridimensional cross-section and was computed with a polynomial 'P' of the second degree and the following four functions:
                                  2
                    P(q) = 1*q + q + {-0.5815147625160462,+0.6358885017421603,0,0}
                                       2
                    fR(R ,R ) = (R *R )
                        1  2      1  2
                    fT(T ,T ) = 2*(T +T )
                        1  2        1  2
                    fP(P ,P ) = 2*(P +P )
                        1  2        1  2
                    fA(A ,A ) = 2*(A +A )
                        1  2        1  2



See some artistic views of this rotation:

Artistic view of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- Artistic view of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-


See the sixteen points of view:

A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) -tridimensional cross-section-


[for more information about pseudo-quaternionic numbers (in english/en anglais)]
[pour plus d'informations à propos des pseudo-quaternions (en français/in french)]


(CMAP28 WWW site: this page was created on 03/11/2010 and last updated on 01/28/2014 16:14:44 -CET-)



[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]
[Go back to AVirtualSpaceTimeTravelMachine [Retour à AVirtualSpaceTimeTravelMachine]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright (c) Jean-François Colonna, 2010-2014.
Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2010-2014.