Tridimensional fractal cross -iteration 5-. | The first four iterations of the construction of the von Koch snowflake. | The Sierpinski Carpet -iteration 1 to 5-. | The Menger Sponge -iteration 5-. | An amazing cross-section inside the Menger Sponge -iteration 5-. |
An amazing cross-section inside the Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-. | Bidimensional Hilbert Curve -iterations 1 to 5-. | Tridimensional Hilbert Curve -iterations 1 to 3-. | A Tridimensional Hilbert-like Curve base on an 'open' 3-foil torus knot -iteration 2-. | A sphere described by means of a Bidimensional Hilbert Curve -iteration 7-. |
The Klein bottle described by means of a Bidimensional Hilbert Curve -iteration 7-. | Tridimensional representation of a quadridimensional Calabi-Yau manifold described by means of 5x5 Bidimensional Hilbert Curves -iteration 5-. | A Ball described by means of a Tridimensional Hilbert Curve -iteration 4-. | Visualization of the Newton's method when computing the roots of Z3=1. | Visualization of the Newton's method when computing the roots of Z5=1. |
Along the border of the Mandelbrot set. | Tridimensional visualization of the Mandelbrot set with mapping of the arguments. | Tridimensional visualization of the Mandelbrot set with mapping of the arguments. | Tridimensional visualization of the Mandelbrot set with mapping of the arguments. | Tridimensional visualization of the Mandelbrot set with mapping of the arguments. |
Tridimensional visualization of the Mandelbrot set with mapping of the arguments. | A foggy pseudo-quaternionic Mandelbrot set (a 'MandelBulb') -tridimensional cross-section-. | A pseudo-octonionic Mandelbrot set (a 'MandelBulb') -tridimensional cross-section-. | A pseudo-octonionic Mandelbrot set (a 'MandelBulb') -'children's corner' or 'the consciousness emerging from Mathematics'- -tridimensional cross-section-. | Close-up on a foggy pseudo-quaternionic Mandelbrot set with a 1/O conformal transformation in the octonionic space -tridimensional cross-section-. |
Close-up on a foggy pseudo-quaternionic Mandelbrot set with a 1/O conformal transformation in the octonionic space -tridimensional cross-section-. | A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) and with a rotation about the X axis -tridimensional cross-section-. | A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) -tridimensional cross-section-. | A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) and with a rotation about the X axis -tridimensional cross-section-. | A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) -tridimensional cross-section-. |
Close-up on a foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) and with a rotation about the X axis and with a tridimensional non linear transformation in the pseudo-octonionic space -tridimensional cross-section-. | Tridimensional high resolution visualization of the Verhulst dynamics -'Time Ships', a Tribute to Stephen Baxter-. |