A periodical tiling of the plane using 3 von Koch-like snowflakes -iteration 3- [Un pavage périodique du plan utilisant 3 flocons de neige de type von Koch -itération 3-].




  • Some few fractal shapes (like the von Koch snowflake) can be used to tile the plane using scaling and rotations:



  • 2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.

    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.

    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.



  • Some few fractal shapes (like the von Koch snowflake) can be used to tile the plane using scaling and rotations:



  • 2 snowflakes
    2 iterations.

    2 snowflakes
    3 iterations.

    2 snowflakes
    4 iterations.

    2 snowflakes
    5 iterations.

    2 snowflakes
    2 iterations.

    2 snowflakes
    3 iterations.

    2 snowflakes
    4 iterations.

    2 snowflakes
    5 iterations.




    2 snowflakes
    5 iterations.



  • Some few fractal shapes (like the von Koch snowflake) can be used to tile the plane using scaling and rotations:



  • 3 snowflakes
    2 iterations.

    3 snowflakes
    3 iterations.

    3 snowflakes
    4 iterations.

    3 snowflakes
    5 iterations.

    3 snowflakes
    2 iterations.

    3 snowflakes
    3 iterations.

    3 snowflakes
    4 iterations.

    3 snowflakes
    5 iterations.




    3 snowflakes
    5 iterations.



  • Some few fractal shapes (like the von Koch snowflake) can be used to tile the plane using scaling and rotations:



  • 2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.

    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.


    Mapping of a finite subset on a cylinder:


    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.


    Mapping of a finite subset on a sphere:


    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.


    Mapping of a finite subset on a torus:


    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.


    Mapping of a finite subset on the Möbius strip:


    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.


    Mapping of a finite subset on the Klein bottle:


    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.


    Mapping of a finite subset on the Bonan-Jeener double bottle:


    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.


    Mapping of a finite subset on a quadridimensional Calabi-Yau manifold:


    2 snowflakes
    3 iterations.

    3 snowflakes
    3 iterations.

    4 snowflakes
    3 iterations.



    (CMAP28 WWW site: this page was created on 06/20/2025 and last updated on 07/09/2025 17:45:54 -CEST-)



    [See the generator of this picture [Voir le générateur de cette image]]

    [See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

    [Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]
    [Please visit the related IdMCNRS picture gallery [Visitez la galerie d'images IdMCNRS associée]]
    [Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]

    [Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

    [The Y2K Bug [Le bug de l'an 2000]]

    [Site Map, Help and Search [Plan du Site, Aide et Recherche]]
    [Mail [Courrier]]
    [About Pictures and Animations [A Propos des Images et des Animations]]


    Copyright © Jean-François COLONNA, 2025-2025.
    Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2025-2025.