
Close-up on a pseudo-octonionic Mandelbrot set (a 'Mandelbulb') transformed using the tridimensional life game -tridimensional cross-section- [Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-octonions (un 'Mandelbulb') transformé en utilisant le jeu de la vie tridimensionnel -section tridimensionnelle-].
P(o) = 1*o + C
8
fR(R ,R ) = (R *R )
1 2 1 2
fA1(A1 ,A1 ) = 8*(A1 +A1 )
1 2 1 2
fA2(A2 ,A2 ) = 8*(A2 +A2 )
1 2 1 2
fA3(A3 ,A3 ) = 8*(A3 +A3 )
1 2 1 2
fA4(A4 ,A4 ) = 1*(A4 +A4 )
1 2 1 2
fA5(A5 ,A5 ) = 1*(A5 +A5 )
1 2 1 2
fA6(A6 ,A6 ) = 1*(A6 +A6 )
1 2 1 2
fA7(A7 ,A7 ) = 1*(A7 +A7 )
1 2 1 2
[R1 = Birth] ((C(t).IS.off).AND.(N == 3)) ==> C(t+1) on
[R2 = Death] ((C(t).IS.on).AND.((N < 2).OR.(N > 3))) ==> C(t+1) off
[R3] other cases ==> C(t+1)=C(t)
The boundary conditions can be periodical or not.
[R1 = Birth] ((C(t).IS.off).AND.((N >= NB1).AND.(N <= NB2))) ==> C(t+1) on
[R2 = Death] ((C(t).IS.on).AND.((N < ND1).OR.(N > ND2))) ==> C(t+1) off
[R3] other cases ==> C(t+1)=C(t)
The bidimensional and tridimensional processes can be extended one step further using two binary lists
'LD' and 'LA' ("Dead" -off- and "Alive" -on- respectively):
[R1 = Birth] ((C(t).IS.off).AND.(LD[N] == 1)) ==> C(t+1)=on
[R2 = Death] ((C(t).IS.on).AND.(LA[N] == 1)) ==> C(t+1)=off
[R3] other cases ==> C(t+1)=C(t)
In the bidimensional case the default 'LD' and 'LA' lists are:
LD="000100000"
LA="110011110"
LD="000010001110000011100010000"
LA="111111100011111110000111111"