click to view the MPEG movie (cliquez pour voir le film MPEG)

The 'peeling' of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb') -tridimensional cross-section- [L''épluchage' d'un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb': un 'JuliaBulb') -section tridimensionnelle-].




This Julia set is a tridimensional cross-section and was computed with a polynomial 'P' of the second degree and the following four functions:
                            2
                    P(q) = q  + {-0.5815147625160462,+0.6358885017421603,0,0}
                    
                    fR(R ,R ) = R *R
                        1  2     1  2
                    fT(T ,T ) = T +T
                        1  2     1  2
                    fP(P ,P ) = P +P
                        1  2     1  2
                    fA(A ,A ) = A +A
                        1  2     1  2



See the sixteen iso-surfaces:

A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 28 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 30 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 32 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 34 iterations -tridimensional cross-section-  
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 20 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 22 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 24 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 26 iterations -tridimensional cross-section-  
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 12 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 14 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 16 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 18 iterations -tridimensional cross-section-  
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 4 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 6 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 8 iterations -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.58...,+0.63...,0,0) with 10 iterations -tridimensional cross-section-


[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]

[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[pour plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]


(CMAP28 WWW site: this page was created on 05/03/2010 and last updated on 04/02/2019 08:05:26 -CEST-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Go back to AVirtualSpaceTimeTravelMachine [Retour à AVirtualSpaceTimeTravelMachine]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright (c) Jean-François Colonna, 2010-2019.
Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2010-2019.