Close-up on a pseudo-octonionic Mandelbrot set (a 'Mandelbulb') -tridimensional cross-section- [Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-octonions (un 'Mandelbulb') -section tridimensionnelle-].

See a close-up set with an increasing zoom ratio from left to right (possibly including this one):

--> --> --> --> --> --> --> -->
--> --> --> --> --> --> --> -->

See the pseudo-octonionic Mandelbrot set:

This Mandelbrot set is a tridimensional cross-section and was computed with a polynomial 'P' of the first degree ('C' denoting the current octonionic point) and the following eight functions:
```
P(o) = 1*o + C
```
```
5
fR(R ,R ) = (R *R )
1  2      1  2
```
```
fA1(A1 ,A1 ) = 5*(A1 +A1 )
1   2         1   2
```
```
fA2(A2 ,A2 ) = 5*(A2 +A2 )
1   2         1   2
```
```
fA3(A3 ,A3 ) = 5*(A3 +A3 )
1   2         1   2
```
```
fA4(A4 ,A4 ) = 1*(A4 +A4 )
1   2         1   2
```
```
fA5(A5 ,A5 ) = 1*(A5 +A5 )
1   2         1   2
```
```
fA6(A6 ,A6 ) = 1*(A6 +A6 )
1   2         1   2
```
```
fA7(A7 ,A7 ) = 1*(A7 +A7 )
1   2         1   2
```

See a 1/O conformal transformation in the pseudo-octonionic space:

(CMAP28 WWW site: this page was created on 04/07/2021 and last updated on 05/12/2021 19:14:29 -CEST-)

[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[See the following comment(s): octonionic numbers, pseudo-octonionic numbers, Mandelbrot set [Voir le(s) commentaire(s) suivant(s): octonions, pseudo-octonions, ensemble de Mandelbrot]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]