La Conjecture de Gilbreath






Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[N'oubliez pas de visiter Une Machine Virtuelle à Explorer l'Espace-Temps et au-delà où vous trouverez plus de 10.000 images et animations à la frontière de l'Art et de la Science]
(Site WWW CMAP28 : cette page a été créée le 28/09/2025 et mise à jour le 06/10/2025 14:55:34 -CEST-)



[in english/en anglais]






Remarque préliminaire : Ce qui suit résulte d'une collaboration avec Jean-Paul Delahaye professeur émérite à l'Université de Lille, chercheur au laboratoire au Laboratoire Cristal de Lille et chroniqueur bien connu de Pour La Science.



1-Définition :

Il s'agit d'une conjecture énoncée en 1958 par Norman L. Gilbreath mais déjà formulée en 1878 par François Proth. Elle est relative aux nombre premiers et aux séquences obtenues en calculant la valeur absolue de la différence entre chaque nombre premier et son successeur, puis en répétant ce processus ad infinitum :

                    
                    2         3         5         7        11        13        17        19        23        29        31        (...)
                     \       / \       / \       / \       / \       / \       / \       / \       / \       / \       / \       /
                      \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /
                       \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /
                        \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /
                         1         2         2         4         2         4         2         4         6         2        (...)
                          \       / \       / \       / \       / \       / \       / \       / \       / \       / \       /
                           \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /
                            \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /
                             \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /
                              1         0         2         2         2         2         2         2         4        (...)
                               \       / \       / \       / \       / \       / \       / \       / \       / \       /
                                \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /
                                 \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /
                                  \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /
                                   1         2         0         0         0         0         0         2        (...)
                                    \       / \       / \       / \       / \       / \       / \       / \       /
                                     \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /
                                      \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /
                                       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /
                                        1         2         0         0         0         0         2        (...)
                                         \       / \       / \       / \       / \       / \       / \       /
                                          \     /   \     /   \     /   \     /   \     /   \     /   \     /
                                           \   /     \   /     \   /     \   /     \   /     \   /     \   /
                                            \ /       \ /       \ /       \ /       \ /       \ /       \ /
                                             1         2         0         0         0         2        (...)
                                              \       / \       / \       / \       / \       / \       /
                                               \     /   \     /   \     /   \     /   \     /   \     /
                                                \   /     \   /     \   /     \   /     \   /     \   /
                                                 \ /       \ /       \ /       \ /       \ /       \ /
                                                  1         2         0         0         2        (...)
                                                   \       / \       / \       / \       / \       /
                                                    \     /   \     /   \     /   \     /   \     /
                                                     \   /     \   /     \   /     \   /     \   /
                                                      \ /       \ /       \ /       \ /       \ /
                                                       1         2         0         2        (...)
                                                        \       / \       / \       / \       /
                                                         \     /   \     /   \     /   \     /
                                                          \   /     \   /     \   /     \   /
                                                           \ /       \ /       \ /       \ /
                                                            1         2         2        (...)
                                                             \       / \       / \       /
                                                              \     /   \     /   \     /
                                                               \   /     \   /     \   /
                                                                \ /       \ /       \ /
                                                                 1         0        (...)
                                                                  \       / \       /
                                                                   \     /   \     /
                                                                    \   /     \   /
                                                                     \ /       \ /
                                                                      1        (...)
                                                                       \       /
                                                                        \     /
                                                                         \   /
                                                                          \ /
                                                                          (...)
Cette conjecture affirme que la première valeur de chaque ligne est un 1 (à l'exception de la première ligne où il s'agit d'un 2 -le premier nombre premier-) a été étudiée en 1993 par Andrew Odlyzko. Il a pu la vérifier pour tous les nombres premiers inférieurs à 1013. Le dimanche 05/10/2025 à 20:45 (heure de Paris, France) j'ai réussi à la vérifier jusqu'à 1014.



2-IN PROGRESS/EN COURS

IN PROGRESS/EN COURS







Copyright © Jean-François COLONNA, 2025-2025.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2025-2025.