
2 3 5 7 11 13 17 19 23 29 31 (...)
\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
1 2 2 4 2 4 2 4 6 2 (...)
\ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
1 0 2 2 2 2 2 2 4 (...)
\ / \ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ / \ /
1 2 0 0 0 0 0 2 (...)
\ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ / \ /
1 2 0 0 0 0 2 (...)
\ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ / \ /
1 2 0 0 0 2 (...)
\ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ /
\ / \ / \ / \ / \ / \ /
1 2 0 0 2 (...)
\ / \ / \ / \ / \ /
\ / \ / \ / \ / \ /
\ / \ / \ / \ / \ /
\ / \ / \ / \ / \ /
1 2 0 2 (...)
\ / \ / \ / \ /
\ / \ / \ / \ /
\ / \ / \ / \ /
\ / \ / \ / \ /
1 2 2 (...)
\ / \ / \ /
\ / \ / \ /
\ / \ / \ /
\ / \ / \ /
1 0 (...)
\ / \ /
\ / \ /
\ / \ /
\ / \ /
1 (...)
\ /
\ /
\ /
\ /
(...)
The conjecture states that the first value of each line is 1 (except the first one where it is a 2 -the only even prime number-)
and was studied by Andrew Odlyzko in 1993. He did check it for all prime numbers less than 1013.
x
=
x
=
x
=
x
=
x
=
0 = Dark Cyan,
-1 = Dark Orange,
+1 = Light Orange,
-2 = Dark Green,
+2 = Light Green,
when all other numbers -{3,4,5,6,7,8,...}- are Grey (Dark and Light Grey respectively for the negative and positive numbers).
According to the Proth-Gilbreath Conjecture, in the middle pictures, the left-hand side column must be Cyan ('1')
except the square at the very top that is Light Yellow ('2', the first prime number).
p1=2
p2=3
p3=5
etc...
Let's define the suite dk(n):
d0(n) = pn for all n such as n > 0
dk(n) = |dk-1(n) - dk-1(n+1)| for all k such as k > 0 and for all n such as n > 0
Then one must check that:
dk(1) = 1 for all k such as k > 0
dK(1) = 1
dK(n) ∈ {0,2} for all n such as 0 < n < N+1
then:
dk(1) = 1 for all k such as K-1 < k < N+K
dj(1) = 1, 0 < j < k+1
dk(n) ∈ {0,2} for all n such as 0 < n < N+1
A trivial reasoning shows that G(N) does exist for all N and that the process can be stopped as soon as there are only '0's, '1's and '2's on the current line of rank k.
For example:
k=0 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
≠ ≠ ≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠ ≠≠
k=1 1 2 2 4 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4
≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠
k=2 1 0 2 2 2 2 2 2 4 4 2 2 2 2 0 4 4 2
≠ ≠ ≠ ≠
k=3 1 2 0 0 0 0 0 2 0 2 0 0 0 2 4 0 2
≠
k=4 1 2 0 0 0 0 2 2 2 2 0 0 2 2 4 2
≠
k=5 1 2 0 0 0 2 0 0 0 2 0 2 0 2 2
==> G=5
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
1 2 2 4 2 4 2 4 6 6 4 2 4 6 6 2 6 4
1 0 2 2 2 2 2 2 2 2 2 2 0 4 4 2
0 0 0 2 4 0 2
0 0 2 2 4 2
0 2 0 2 2
Obviously, the difference 31-29 is
missing. Jean-Paul Delahaye then suggested that the blocks should not be disjoint, but should
partially overlap as follows, based on an estimated G (taken as 5 below):
2 3 5 7 11 13 17 19 23 29 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
1 2 2 4 2 4 2 4 6 4 2 4 6 2 6 4 2 4 6 6 2 6 4
1 0 2 2 2 2 2 2 2 2 2 4 4 2 2 2 2 0 4 4 2
1 2 0 0 0 0 0 0 0 2 0 2 0 0 0 2 4 0 2
1 2 0 0 0 0 0 2 2 2 2 0 0 2 2 4 2
1 2 0 0 0 2 0 0 0 2 0 2 0 2 2
that is:
2 3 5 7 11 13 17 19 23 29
13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
== == == == ==
1 2 2 4 2 4 2 4 6
4 2 4 6 2 6 4 2 4 6 6 2 6 4
= = = =
1 0 2 2 2 2 2 2
2 2 2 4 4 2 2 2 2 0 4 4 2
= = =
1 2 0 0 0 0 0
0 0 2 0 2 0 0 0 2 4 0 2
= =
1 2 0 0 0 0
0 2 2 2 2 0 0 2 2 4 2
=
1 2 0 0 0
2 0 0 0 2 0 2 0 2 2
One might note that this overlap of 5 numbers significantly increases
the number of computations. In fact, this is true in this example, where each block
contains only 10 numbers. But the calculations that will be carried out to break the 1993 record will
use much larger blocks (generally of size 107), and even if the overlap used is
larger (typically around 1000), the number of additional computations due to the overlaps remains
relatively very small.
x Pi(x) G(Pi(x))
10^2 25 5
10^3 168 15
10^4 1229 35
10^5 9592 65
10^6 78498 95
10^7 664579 135
10^8 5761455 175
10^9 50847534 248
10^10 455052511 329
10^11 4118054813 417
10^12 37607912018 481
10^13 346065536839 635
where 'x' is the last integer tested (the last prime number being strictly less
than x), 'Pi(x)' is the number of prime numbers in [1,x],
and finally 'G(Pi(x))' gives us the minimum overlap size.

2 - 1x1014 | 1x1014 - 2x1014 | 2x1014 - 3x1014 | 3x1014 - 4x1014 |
2 3 5 11 13 17 19
1 2 6 2 4 2
1 4 4 2 2
3 0 2 0
3 2 2
1 0
1
Nota: same phenomenon by removing the 7 or again the 11...