Gilbreath Conjecture






Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 09/28/2025 and last updated on 10/06/2025 14:55:14 -CEST-)



[en français/in french]






Preliminary Remark: The following research is the fruit of a collaboration with Jean-Paul Delahaye professor at the Université de Lille, researcher at the Lille Cristal laboratory and well known columnist for the Pour La Science newspaper.



1-Definition:

This conjecture was stated in 1958 by orman L. Gilbreath but published earlier in 1878 by François Proth. It is related to the prime numbers and to the sequences generated by taking the absolute value of the difference between each prime number and its successor and then repeating this process ad infinitum:

                    
                    2         3         5         7        11        13        17        19        23        29        31        (...)
                     \       / \       / \       / \       / \       / \       / \       / \       / \       / \       / \       /
                      \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /
                       \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /
                        \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /
                         1         2         2         4         2         4         2         4         6         2        (...)
                          \       / \       / \       / \       / \       / \       / \       / \       / \       / \       /
                           \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /
                            \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /
                             \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /
                              1         0         2         2         2         2         2         2         4        (...)
                               \       / \       / \       / \       / \       / \       / \       / \       / \       /
                                \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /
                                 \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /
                                  \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /
                                   1         2         0         0         0         0         0         2        (...)
                                    \       / \       / \       / \       / \       / \       / \       / \       /
                                     \     /   \     /   \     /   \     /   \     /   \     /   \     /   \     /
                                      \   /     \   /     \   /     \   /     \   /     \   /     \   /     \   /
                                       \ /       \ /       \ /       \ /       \ /       \ /       \ /       \ /
                                        1         2         0         0         0         0         2        (...)
                                         \       / \       / \       / \       / \       / \       / \       /
                                          \     /   \     /   \     /   \     /   \     /   \     /   \     /
                                           \   /     \   /     \   /     \   /     \   /     \   /     \   /
                                            \ /       \ /       \ /       \ /       \ /       \ /       \ /
                                             1         2         0         0         0         2        (...)
                                              \       / \       / \       / \       / \       / \       /
                                               \     /   \     /   \     /   \     /   \     /   \     /
                                                \   /     \   /     \   /     \   /     \   /     \   /
                                                 \ /       \ /       \ /       \ /       \ /       \ /
                                                  1         2         0         0         2        (...)
                                                   \       / \       / \       / \       / \       /
                                                    \     /   \     /   \     /   \     /   \     /
                                                     \   /     \   /     \   /     \   /     \   /
                                                      \ /       \ /       \ /       \ /       \ /
                                                       1         2         0         2        (...)
                                                        \       / \       / \       / \       /
                                                         \     /   \     /   \     /   \     /
                                                          \   /     \   /     \   /     \   /
                                                           \ /       \ /       \ /       \ /
                                                            1         2         2        (...)
                                                             \       / \       / \       /
                                                              \     /   \     /   \     /
                                                               \   /     \   /     \   /
                                                                \ /       \ /       \ /
                                                                 1         0        (...)
                                                                  \       / \       /
                                                                   \     /   \     /
                                                                    \   /     \   /
                                                                     \ /       \ /
                                                                      1        (...)
                                                                       \       /
                                                                        \     /
                                                                         \   /
                                                                          \ /
                                                                          (...)
The conjecture states that the first value of each line is 1 (except the first one where it is a 2 -the only even prime number-) and was studied by Andrew Odlyzko in 1993. He did check it for all prime numbers less than 1013. On sunday 10/05/2025 20:45 (Paris time, France) I did succeed to check it up to 1014.



2-IN PROGRESS/EN COURS

IN PROGRESS/EN COURS







Copyright © Jean-François COLONNA, 2025-2025.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2025-2025.