
Tridimensional display of the Riemann Zeta function inside [-10.0,+20.0]x[-15.0,+15.0] (bird's-eye view) [Visualisation tridimensionnelle de la fonction Zêta de Riemann dans [-10.0,+20.0]x[-15.0,+15.0] (vue aérienne)].
                            n=+infinity
                              _______
                              \
                               \       -s
                    Zeta(s) =  /      n
                              /______
                                n=1
                    \-/ s > 1
                            n=+infinity
                              _______
                              \
                               \       -z
                    Zeta(z) =  /      n
                              /______
                                n=1
                    \-/ z : Re(z) > 1
                              _________
                               |     |
                               |     |      1
                    Zeta(z) =  |     |  ---------
                               |     |        -z
                               |     |   1 - p
                                p E P
where 'P' denotes the set of the prime numbers 'p'.
                               n=N-1
                              _______
                              \
                               \       -z
                    Zeta(z) =  /      n
                              /______
                                n=1
                                1-z      -z
                               N        N
                            + ------ + -----
                               z-1       2
                                k=V                        p=2k-2
                              _______                     ________
                              \          B                 |    |
                               \          2k    -z-(2k)+1  |    |
                            +  /      [-------.N           |    | (z+p)]
                              /______   (2k)!              |    |
                                k=1                          p=0
                            + epsilon(z,N,V)
                    \-/ z : Re(z+2V+1) > 1
                    N ~ |z|
 
  
  
  
  
  
 the absolute value of the Real part of Zeta(z),
the absolute value of the Real part of Zeta(z),
 the absolute value of the Imaginary part of Zeta(z),
the absolute value of the Imaginary part of Zeta(z),
 the Modulus of Zeta(z),
the Modulus of Zeta(z),
 the Phase of Zeta(z).
the Phase of Zeta(z).