The 288.982 first digits of the 'prime' Champernowne number (=0.2 3 5 7 11 13 17 19 23 29...) displayed as an 'absolute' bidimensional random walk using the square root of the distance to the origin [Les 288.982 premières décimales du nombre de Champernowne 'premier' (=0.2 3 5 7 11 13 17 19 23 29...) visualisées comme une marche aléatoire bidimensionnelle 'absolue' en utilisant la racine carrée de la distance à l'origine].




Each digit N -base 10- defines the current step of an "absolute" bidimensional random walk using polar coordinates:
                    RHO  = constant
                    TETA = 2.pi.N/10
'TETA' being an absolute angle. At last, the square root of the distance from each point to the origin is taken.


See some related pictures (possibly including this one):

 
 



(CMAP28 WWW site: this page was created on 12/26/2013 and last updated on 10/23/2016 10:23:28 -CEST-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Go back to AVirtualSpaceTimeTravelMachine [Retour à AVirtualSpaceTimeTravelMachine]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright (c) Jean-François Colonna, 2013-2016.
Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2013-2016.