
Tridimensional display of the Riemann Zeta function inside [-10.0,+60.0]x[-35.0,+35.0] (bird's-eye view) [Visualisation tridimensionnelle de la fonction Zêta de Riemann dans [-10.0,+60.0]x[-35.0,+35.0] (vue aérienne)].
                            n=+infinity
                              _______
                              \
                               \       -s
                    Zeta(s) =  /      n
                              /______
                                n=1
                    \-/ s > 1
                            n=+infinity
                              _______
                              \
                               \       -z
                    Zeta(z) =  /      n
                              /______
                                n=1
                    \-/ z : Re(z) > 1
                              _________
                               |     |
                               |     |      1
                    Zeta(z) =  |     |  ---------
                               |     |        -z
                               |     |   1 - p
                                p E P
where 'P' denotes the set of the prime numbers 'p'.
                               n=N-1
                              _______
                              \
                               \       -z
                    Zeta(z) =  /      n
                              /______
                                n=1
                                1-z      -z
                               N        N
                            + ------ + -----
                               z-1       2
                                k=V                        p=2k-2
                              _______                     ________
                              \          B                 |    |
                               \          2k    -z-(2k)+1  |    |
                            +  /      [-------.N           |    | (z+p)]
                              /______   (2k)!              |    |
                                k=1                          p=0
                            + epsilon(z,N,V)
                    \-/ z : Re(z+2V+1) > 1
                    N ~ |z|
 
 
 
 
 
the absolute value of the Real part of Zeta(z),
the absolute value of the Imaginary part of Zeta(z),
the Modulus of Zeta(z),
the Phase of Zeta(z).