
Tridimensional display of the Riemann Zeta function inside [-10.0,+20.0]x[-15.0,+15.0] [Visualisation tridimensionnelle de la fonction Zêta de Riemann dans [-10.0,+20.0]x[-15.0,+15.0]].
n=+infinity
_______
\
\ -s
Zeta(s) = / n
/______
n=1
\-/ s > 1
n=+infinity
_______
\
\ -z
Zeta(z) = / n
/______
n=1
\-/ z : Re(z) > 1
_________
| |
| | 1
Zeta(z) = | | ---------
| | -z
| | 1 - p
p E P
where 'P' denotes the set of the prime numbers 'p'.
n=N-1
_______
\
\ -z
Zeta(z) = / n
/______
n=1
1-z -z
N N
+ ------ + -----
z-1 2
k=V p=2k-2
_______ ________
\ B | |
\ 2k -z-(2k)+1 | |
+ / [-------.N | | (z+p)]
/______ (2k)! | |
k=1 p=0
+ epsilon(z,N,V)
\-/ z : Re(z+2V+1) > 1
N ~ |z|
the absolute value of the Real part of Zeta(z),
the absolute value of the Imaginary part of Zeta(z),
the Modulus of Zeta(z),
the Phase of Zeta(z).