Tridimensional display of the Gamma function inside [-20.0,+20.0]x[-20.0,+20.0] [Visualisation tridimensionnelle de la fonction Gamma dans [-20.0,+20.0]x[-20.0,+20.0]].

The Gamma function can be computed for all z with the following analytic continuation:
```                    Gamma(z) = factorial(z-1)

__
1                log(2 ||)
log(factorial(z)) = (z + ---)log(z) - z + ------------
2                    2

k=V
_______
\             B
\             2k
+  /      ---------------
/______           2k-1
2k(2k-1)z
k=1

+ epsilon(z,N,V)

factorial(z+n)
factorial(z) = --------------------
(z+1)(z+2)...(z+n)
```

This picture displays the modulus of the Gamma function as a surface in a tridimensional space (the two dimensions of the complex plane plus the modulus). The so-called "phase" of the Gamma function (its argument) is displayed as colors painting the surface; the [0, 2.pi] segment is mapped on the {Blue,Red,Magenta,Green,Cyan,Yellow,White} set.

Here are more pictures about the Gamma function:

• the absolute value of the Real part of Gamma(z),
• the absolute value of the Imaginary part of Gamma(z),
• the Modulus of Gamma(z),
• the Phase of Gamma(z).

(CMAP28 WWW site: this page was created on 06/25/1999 and last updated on 03/04/2019 15:44:31 -CET-)

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Go back to AVirtualSpaceTimeTravelMachine [Retour à AVirtualSpaceTimeTravelMachine]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]