
The Syracuse Conjecture for U(0)={5,6,7,8,...,20} -polar coordinates display- [La conjecture de Syracuse pour U(0)={5,6,7,8,...,20} -visualisation en coordonnées polaires-].
                    U  = N (an integer number [un nombre entier]) > 0
                     0
                    if U  is even [si U  est pair] :
                        n              n
                                                U
                                                 n
                                        U    = ----
                                         n+1    2
                    else [sinon] :
                                        U    = 3*U  + 1
                                         n+1      n
                    U(0)  =  7
                    U(1)  = 22
                    U(2)  = 11
                    U(3)  = 34
                    U(4)  = 17
                    U(5)  = 52
                    U(6)  = 26
                    U(7)  = 13
                    U(8)  = 40
                    U(9)  = 20
                    U(10) = 10
                    U(11) =  5
                    U(12) = 16
                    U(13) =  8
                    U(14) =  4
                    U(15) =  2
                    U(16) =  1
                    Rho(n)  = U  (with a renormalization inside [0,1])
                               n
                                2.pi
                    Theta(n) = ------.n
                                nM+1
                    X(n)    = Rho(n).cos(Theta(n))
                    Y(n)    = Rho(n).sin(Theta(n))
where 'nM' denotes the first 'n' such as:
                    U   = 1
                     nM
The colors used are a function of 'n' (from Dark Blue [n=0] to White with an increasing luminance 
).