Close-up on a pseudo-octonionic Mandelbrot set (a 'Mandelbulb') for sixteen different lightings -tridimensional cross-section- [Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-octonions (un 'Mandelbulb') pour seize éclairages différents -section tridimensionnelle-]
.
This Mandelbrot set is a tridimensional cross-section and was computed with a polynomial 'P' of the first degree
('C' denoting the current octonionic point) and the following eight functions:
P(o) = 1*o + C
8
fR(R ,R ) = (R *R )
1 2 1 2
fA1(A1 ,A1 ) = 8*(A1 +A1 )
1 2 1 2
fA2(A2 ,A2 ) = 8*(A2 +A2 )
1 2 1 2
fA3(A3 ,A3 ) = 8*(A3 +A3 )
1 2 1 2
fA4(A4 ,A4 ) = 1*(A4 +A4 )
1 2 1 2
fA5(A5 ,A5 ) = 1*(A5 +A5 )
1 2 1 2
fA6(A6 ,A6 ) = 1*(A6 +A6 )
1 2 1 2
fA7(A7 ,A7 ) = 1*(A7 +A7 )
1 2 1 2
See the same object with a different lighting:
[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]
[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[Plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]
(CMAP28 WWW site: this page was created on 01/03/2013 and last updated on 05/12/2021 19:11:46 -CEST-)
[See the generator of this picture [Voir le générateur de cette image]]
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[See the following comment(s): octonionic numbers, pseudo-octonionic numbers, Mandelbrot set [Voir le(s) commentaire(s) suivant(s): octonions, pseudo-octonions, ensemble de Mandelbrot]]
[Please visit the related GeneralitiesVisualization picture gallery [Visitez la galerie d'images GeneralitiesVisualization associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François Colonna, 2013-2021.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2013-2021.