
The tridimensional John Conway's life game with random initial conditions -1.2% of occupied cells- [Le jeu de la vie tridimensionnel de John Conway avec des conditions initiales aléatoires -1.2% de cellules occupées-].
[R1 = Birth] ((C(t).IS.off).AND.(N == 3)) ==> C(t+1) on
[R2 = Death] ((C(t).IS.on).AND.((N < 2).OR.(N > 3))) ==> C(t+1) off
[R3] other cases ==> C(t+1)=C(t)
The boundary conditions can be periodical or not.
[R1 = Birth] ((C(t).IS.off).AND.((N >= NB1).AND.(N <= NB2))) ==> C(t+1) on
[R2 = Death] ((C(t).IS.on).AND.((N < ND1).OR.(N > ND2))) ==> C(t+1) off
[R3] other cases ==> C(t+1)=C(t)
The bidimensional and tridimensional processes can be extended one step further using two binary lists
'LD' and 'LA' ("Dead" -off- and "Alive" -on- respectively):
[R1 = Birth] ((C(t).IS.off).AND.(LD[N] == 1)) ==> C(t+1)=on
[R2 = Death] ((C(t).IS.on).AND.(LA[N] == 1)) ==> C(t+1)=off
[R3] other cases ==> C(t+1)=C(t)
In the bidimensional case the default 'LD' and 'LA' lists are:
LD="000100000"
LA="110011110"
("1" means "to change the state" and "0" means "the state is unchanged").
LD="000010001110000011100010000"
LA="111111100011111110000111111"