32 points on a trigonometric circle [32 points sur un cercle trigonométrique].

Let E be a N-dimensional space. It contains a set S of points {P(i)} with coordinates {C(1),C(2),...,C(N)}. The set S is visualized using a tridimensional euclidian space {OX,OY,OZ}:

• The OZ axis bears the number 'i' of each point P(i). The point order is given a priori.
• The {OX,OY} plane contains N lines L(j). Each line L(j) is associated with the coordinate C(j) of each point P(i). Then, each point P(i) is visualized as a polygon belonging to the plane Z=i.
Next figure displays a tridimensional (N=3) point (with coordinates {C(1),C(2),C(3)}) as a triangle:

```                         X(3) +                                       + X(2)
+                                   +
+                               +
+                           # C(2)
+                       + */*
+                   +   *///*
+               +     */////*
+           +       *///////*
+       +         */////////*
+   +           *///////////
- - - - - - - - - - - - - - - O + + + + + + +/+/+/+/+/+/# + + X(1)
-   -           */////////C(1)
-       -         */////////*
-           -       *///////*
-               -     */////*
-                   -   *///*
-                       - */*
-                           # C(3)
-                               -
-                                   -
-                                       -
```
assuming that:

```                    C(1) > 0
C(2) > 0
C(3) < 0
```

#### See miscellaneous set of points:

(CMAP28 WWW site: this page was created on 06/30/1997 and last updated on 09/10/2017 11:39:47 -CEST-)

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related GeneralitiesVisualization picture gallery [Visitez la galerie d'images GeneralitiesVisualization associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]