Close-up on a pseudo-octonionic Mandelbrot set (a 'Mandelbulb') with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section- [Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-octonions (un 'Mandelbulb') avec une transformation conforme (4xO+1)/(1xO-1) dans l'ensemble des octonions -section tridimensionnelle-].

This Mandelbrot set is a tridimensional cross-section and was computed with a polynomial 'P' of the first degree ('C' denoting the current octonionic point) and the following eight functions:

P(o) = 1*o + C

8
fR(R ,R ) = (R *R )
1  2      1  2

fA1(A1 ,A1 ) = 8*(A1 +A1 )
1   2         1   2

fA2(A2 ,A2 ) = 8*(A2 +A2 )
1   2         1   2

fA3(A3 ,A3 ) = 8*(A3 +A3 )
1   2         1   2

fA4(A4 ,A4 ) = 1*(A4 +A4 )
1   2         1   2

fA5(A5 ,A5 ) = 1*(A5 +A5 )
1   2         1   2

fA6(A6 ,A6 ) = 1*(A6 +A6 )
1   2         1   2

fA7(A7 ,A7 ) = 1*(A7 +A7 )
1   2         1   2

See the related close-up on the pseudo-octonionic Mandelbrot set:

(CMAP28 WWW site: this page was created on 07/22/2018 and last updated on 01/09/2022 19:27:16 -CET-)

[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[See the following comment(s): octonionic numbers, pseudo-octonionic numbers, Mandelbrot set [Voir le(s) commentaire(s) suivant(s): octonions, pseudo-octonions, ensemble de Mandelbrot]]
[Please visit the related ArtAndScience picture gallery [Visitez la galerie d'images ArtAndScience associée]]
[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]