
The tridimensional John Conway's life game with random initial conditions -24% of occupied cells- [Le jeu de la vie tridimensionnel de John Conway avec des conditions initiales aléatoires -24% de cellules occupées-].
                    [R1 = Birth]        ((C(t).IS.off).AND.(N == 3))            ==> C(t+1) on
                    [R2 = Death]        ((C(t).IS.on).AND.((N < 2).OR.(N > 3))) ==> C(t+1) off
                    [R3]                other cases ==> C(t+1)=C(t)
The boundary conditions can be periodical or not.
                    [R1 = Birth]        ((C(t).IS.off).AND.((N >= NB1).AND.(N <= NB2))) ==> C(t+1) on
                    [R2 = Death]        ((C(t).IS.on).AND.((N < ND1).OR.(N > ND2)))     ==> C(t+1) off
                    [R3]                other cases ==> C(t+1)=C(t)
The bidimensional and tridimensional processes can be extended one step further using two binary lists
'LD' and 'LA' ("Dead" -off- and "Alive" -on- respectively):
                    [R1 = Birth]        ((C(t).IS.off).AND.(LD[N] == 1))  ==> C(t+1)=on
                    [R2 = Death]        ((C(t).IS.on).AND.(LA[N] == 1))   ==> C(t+1)=off
                    [R3]                other cases ==> C(t+1)=C(t)
In the bidimensional case the default 'LD' and 'LA' lists are:
                    LD="000100000"
                    LA="110011110"
("1" means "to change the state" and "0" means "the state is unchanged").
                    NB1=10
                    NB2=14
                    ND1=8
                    ND2=16
 
 
  
 