A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section- [Un ensemble de Julia brumeux dans l'ensemble des pseudo-octonions (comme un 'MandelBulb': un 'JuliaBulb') calculé pour A=(-0.58...,+0.63...,0,0,0,0,0,0) -section tridimensionnelle-].

This Julia set is a tridimensional cross-section and was computed with a polynomial 'P' of the first degree and the following eight functions (where the exponent 8 as well as the multiplicative factor 8 are also called the degree):
                    P(o) = 1*o + {-0.5815147625160462,+0.6358885017421603,0,0,0,0,0,0}
                    fR(R ,R ) = (R *R )
                        1  2      1  2
                    fA1(A1 ,A1 ) = 8*(A1 +A1 )
                          1   2         1   2
                    fA2(A2 ,A2 ) = 8*(A2 +A2 )
                          1   2         1   2
                    fA3(A3 ,A3 ) = 8*(A3 +A3 )
                          1   2         1   2
                    fA4(A4 ,A4 ) = 8*(A4 +A4 )
                          1   2         1   2
                    fA5(A5 ,A5 ) = 8*(A5 +A5 )
                          1   2         1   2
                    fA6(A6 ,A6 ) = 8*(A6 +A6 )
                          1   2         1   2
                    fA7(A7 ,A7 ) = 8*(A7 +A7 )
                          1   2         1   2

See some Julia sets (including this one) with various degrees:


[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]

[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[Plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]

See some close-ups:

See its pi rotation about the Y axis:

See the octonionic Julia set computed with the same 'A':

(CMAP28 WWW site: this page was created on 10/08/2011 and last updated on 02/08/2022 20:52:53 -CET-)

[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[See the following comment(s): octonionic numbers, pseudo-octonionic numbers, Julia set [Voir le(s) commentaire(s) suivant(s): octonions, pseudo-octonions, ensemble de Julia]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]

Copyright © Jean-François Colonna, 2011-2022.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2011-2022.