Iterations in the complex plane: the computation of a Julia set [Itérations dans le plan complexe: le calcul d'un ensemble de Julia].

When computing a Julia set in the complex plane, one iterates the following computation:
                    Z  = C
                    Z    = Z  + A
                     n+1    n
where 'C' denotes the current point and A=(-0.13,+0.77) for this "Douady rabbit".

Then there are two cases: Z(n+1) stays in the vicinity of the origin (then C belongs to the Julia set -black domain-) or Z(n+1) goes to the infinity (then C does not belong to the Julia set).

This picture displays the trajectories of "current points" C located on a regular 2x2 grid and displayed as big disks.

(CMAP28 WWW site: this page was created on 03/18/2019 and last updated on 03/18/2019 15:05:23 -CET-)

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]
[Please visit the related ImagesDidactiques picture gallery [Visitez la galerie d'images ImagesDidactiques associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]

Copyright (c) Jean-François Colonna, 2019.
Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2019.