
The Goldbach conjecture for the even numbers from 6 to 1564 [La conjecture de Goldbach pour les entiers pairs de 6 à 1564].
The Goldbach conjecture states that each even integer number N greater or equal to 4 can be written
as the sum of two prime numbers. For example:
4 = 2+2
6 = 3+3
8 = 3+5 [= 5+3]
10 = 3+7 = 5+5 [= 7+3]
(...)
990 = 7+983 = 13+977 = 19+971 = 23+967 = 37+953 = 43+947 = 53+937 = 61+929 = 71+919 = 79+911
= 83+907 = 103+887 = 107+883 = 109+881 = 113+877 = 127+863 = 131+859 = 137+853 = 151+839 = 163+827
= 167+823 = 179+811 = 181+809 = 193+797 = 229+761 = 233+757 = 239+751 = 251+739 = 257+733 = 263+727
= 271+719 = 281+709 = 307+683 = 313+677 = 317+673 = 331+659 = 337+653 = 347+643 = 349+641 = 359+631
= 373+617 = 383+607 = 389+601 = 397+593 = 419+571 = 421+569 = 433+557 = 443+547 = 449+541 = 467+523
= 487+503 = 491+499
[= 499+491 = 503+487 = 523+467 = 541+449 = 547+443 = 557+433 = 569+421 = 571+419 = 593+397 = 601+389
= 607+383 = 617+373 = 631+359 = 641+349 = 643+347 = 653+337 = 659+331 = 673+317 = 677+313 = 683+307
= 709+281 = 719+271 = 727+263 = 733+257 = 739+251 = 751+239 = 757+233 = 761+229 = 797+193 = 809+181
= 811+179 = 823+167 = 827+163 = 839+151 = 853+137 = 859+131 = 863+127 = 877+113 = 881+109 = 883+107
= 887+103 = 907+83 = 911+79 = 919+71 = 929+61 = 937+53 = 947+43 = 953+37 = 967+23 = 971+19
= 977+13 = 983+7]
(...)
The vertical axis represents the odd numbers P={3, 5, 7, 9,...} starting at 3 (and then includes the prime numbers excluding the first one -2- that is even),
when the horizontal axis represents the even numbers N={6, 8, 10, 12,...} starting at 6 (this process does not start at 4=2+2 in order to avoid the first
prime number -2 that is an even number- on the vertical axis).
Each N-vertical line exhibits the decompositions of N as sums of two prime numbers (N=P1+P2, P1 and P2 having the same color).
See some related visualizations (including this one):
(CMAP28 WWW site: this page was created on 01/11/2013 and last updated on 10/20/2022 12:46:39 -CEST-)
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François Colonna, 2013-2022.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2013-2022.