The 130.643 first digits of a 'Champernowne number' like (=0.1 2 3 4 5 10 11 12 13 14 15 20 21...) -using all base 6 integer numbers- displayed as an 'absolute' tridimensional random walk [Les 130.643 premières 'décimales' d'un nombre du type 'nombre de Champernowne' (=0.1 2 3 4 5 10 11 12 13 14 15 20 21...) -utilisant tous les nombres entiers en base 6- visualisées comme une marche aléatoire tridimensionnelle 'absolue'].

Each digit N -base 6- defines the current step of an "absolute" tridimensional random walk:
```                    digit=0 ==> move(+1,0,0)
digit=1 ==> move(-1,0,0)
digit=2 ==> move(0,+1,0)
digit=3 ==> move(0,-1,0)
digit=4 ==> move(0,0,+1)
digit=5 ==> move(0,0,-1)
```

The coordinates {X,Y,Z} are renormalized as follows:
```                    [-0.2091,+0.5]x[+0.5,+1.0909]x[+0,+0.1013] --> [0.1,0.9]x[0.1,0.9]x[0.10,0.11]
```

See some famous real numbers (possibly including this one):

See a random number:

See a tridimensional brownian motion:

(CMAP28 WWW site: this page was created on 10/25/2016 and last updated on 01/08/2022 15:15:14 -CET-)

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]