The 130.643 first digits of a 'Champernowne number' like (=0.1 2 3 4 5 10 11 12 13 14 15 20 21...) -using all base 6 integer numbers- displayed as an 'absolute' tridimensional random walk [Les 130.643 premières 'décimales' d'un nombre du type 'nombre de Champernowne' (=0.1 2 3 4 5 10 11 12 13 14 15 20 21...) -utilisant tous les nombres entiers en base 6- visualisées comme une marche aléatoire tridimensionnelle 'absolue'].




Each digit N -base 6- defines the current step of an "absolute" tridimensional random walk:
                    digit=0 ==> move(+1,0,0)
                    digit=1 ==> move(-1,0,0)
                    digit=2 ==> move(0,+1,0)
                    digit=3 ==> move(0,-1,0)
                    digit=4 ==> move(0,0,+1)
                    digit=5 ==> move(0,0,-1)


The coordinates {X,Y,Z} are renormalized as follows:
                    [-0.2091,+0.5]x[+0.5,+1.0909]x[+0,+0.1013] -->[0.1,0.9]x[0.1,0.9]x[0.10,0.11]



See some famous real numbers (possibly including this one):




See a random number:



See a tridimensional brownian motion:




(CMAP28 WWW site: this page was created on 10/25/2016 and last updated on 03/09/2019 13:55:52 -CET-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Go back to AVirtualSpaceTimeTravelMachine [Retour à AVirtualSpaceTimeTravelMachine]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright (c) Jean-François Colonna, 2016-2019.
Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2016-2019.