Tridimensional visualizations of the Verhulst dynamics [Visualisations tridimensionnelles de la dynamique de Verhulst].




The Verhulst dynamics is defined using the following iteration:
                    X  = 0.5
                     0
                    X  = RX   (1 - X   )
                     n     n-1      n-1
Here, in these 16 computations, the growing rate 'R' is no longer constant but changes its value periodically:



Period={R3,R3,R3,R3,R2,R2,R1,R1 
,R1,R1,R2,R2,R3,R2,R2,R1 
,R1,R1,R2,R2,R3,R2,R2,R1 
,R1,R1,R1,R1,R1}

Period={R3,R3,R3,R3,R2,R2,R2,R1 
,R1,R1,R1,R2,R3,R3,R2,R1 
,R1,R1,R1,R2,R3,R3,R2,R2 
,R1,R1,R1,R1,R1,R1}

Period={R3,R3,R3,R3,R2,R2,R2,R1 
,R1,R1,R1,R2,R2,R3,R2,R2 
,R1,R1,R1,R2,R2,R3,R3,R2 
,R2,R1,R1,R1,R1,R1,R1}

Period={R3,R3,R3,R3,R2,R2,R2,R1 
,R1,R1,R1,R2,R2,R3,R3,R2 
,R1,R1,R1,R1,R2,R2,R3,R3 
,R2,R2,R1,R1,R1,R1,R1,R1}

Period={R3,R3,R3,R2,R2,R2,R1,R1 
,R1,R2,R3,R3,R2,R1,R1,R1 
,R2,R3,R2,R2,R1,R1,R1,R1 
,R1}

Period={R3,R3,R3,R3,R2,R2,R1,R1 
,R1,R2,R2,R3,R2,R1,R1,R1 
,R2,R2,R3,R2,R2,R1,R1,R1 
,R1,R1}

Period={R3,R3,R3,R3,R2,R2,R1,R1 
,R1,R1,R2,R3,R2,R2,R1,R1 
,R1,R2,R3,R3,R2,R2,R1,R1 
,R1,R1,R1}

Period={R3,R3,R3,R3,R2,R2,R1,R1 
,R1,R1,R2,R3,R3,R2,R1,R1 
,R1,R2,R2,R3,R3,R2,R2,R1 
,R1,R1,R1,R1}

Period={R3,R3,R3,R2,R2,R1,R1,R1 
,R2,R3,R2,R1,R1,R2,R3,R2 
,R2,R1,R1,R1,R1}

Period={R3,R3,R3,R2,R2,R1,R1,R1 
,R2,R3,R2,R1,R1,R1,R2,R3 
,R2,R2,R1,R1,R1,R1}

Period={R3,R3,R3,R2,R2,R1,R1,R1 
,R2,R3,R3,R2,R1,R1,R2,R3 
,R3,R2,R1,R1,R1,R1,R1}

Period={R3,R3,R3,R2,R2,R1,R1,R1 
,R1,R2,R3,R2,R1,R1,R1,R2 
,R3,R3,R2,R1,R1,R1,R1,R1}

Period={R3,R3,R2,R2,R1,R1,R2,R3 
,R2,R1,R1,R3,R2,R2,R1,R1 
,R1}

Period={R3,R3,R3,R2,R1,R1,R1,R3 
,R2,R1,R1,R2,R3,R2,R1,R1 
,R1,R1}

Period={R3,R3,R3,R2,R1,R1,R1,R2 
,R3,R2,R1,R1,R2,R3,R2,R1 
,R1,R1,R1}

Period={R3,R3,R3,R2,R1,R1,R1,R2 
,R3,R2,R1,R1,R2,R3,R3,R2 
,R1,R1,R1,R1}



where {R1,R2,R3} are respectively the three coordinates of the current point inside the following domain [2.936,3.413]x[3.500,3.850]x[3.000,4.000]. Only the points corresponding to a dynamical system with a negative Lyapunov exponent are displayed.


(CMAP28 WWW site: this page was created on 08/26/2019 and last updated on 08/26/2019 14:20:24 -CEST-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related DeterministicChaos picture gallery [Visitez la galerie d'images DeterministicChaos associée]]
[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]
[Go back to AVirtualSpaceTimeTravelMachine [Retour à AVirtualSpaceTimeTravelMachine]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright (c) Jean-François Colonna, 2019.
Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2019.