Tridimensional representation of a quadridimensional Calabi-Yau manifold described by means of 5x5 Bidimensional Hilbert Curves -iteration 5- [Représentation tridimensionnelle d'une variété quadridimensionnelle de Calabi-Yau décrite à l'aide de 5x5 courbes de Hilbert bidimensionnelle -itération 5-].

This picture displays the encounter of two infinitely small. On the one hand, the Physics one: the Calabi-Yau manifold is at the heart of the super-string theory at the Planck scale -1.6 10-35 meter-. On the other hand, the Mathematics one: the Hilbert space filling Curve exhibits an application between [0,1] and [0,1]x[0,1]: R and R2have the same cardinality.

See the Bidimensional Hilbert Curve -iteration 5-:

See the quadridimensional Calabi-Yau manifold:

(CMAP28 WWW site: this page was created on 04/04/2023 and last updated on 07/04/2023 12:13:02 -CEST-)

[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]
[Please visit the related GeneralitiesVisualization picture gallery [Visitez la galerie d'images GeneralitiesVisualization associée]]
[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]

Copyright © Jean-François COLONNA, 2023-2023.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2023-2023.